• Title/Summary/Keyword: eclipsing binary stars

Search Result 76, Processing Time 0.021 seconds

Exploring the temporal and spatial variability with DEEP-South observations: reduction pipeline and application of multi-aperture photometry

  • Shin, Min-Su;Chang, Seo-Won;Byun, Yong-Ik;Yi, Hahn;Kim, Myung-Jin;Moon, Hong-Kyu;Choi, Young-Jun;Cha, Sang-Mok;Lee, Yongseok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.70.1-70.1
    • /
    • 2018
  • The DEEP-South photometric census of small Solar System bodies is producing massive time-series data of variable, transient or moving objects as a by-product. To fully investigate unexplored variable phenomena, we present an application of multi-aperture photometry and FastBit indexing techniques to a portion of the DEEP-South year-one data. Our new pipeline is designed to do automated point source detection, robust high-precision photometry and calibration of non-crowded fields overlapped with area previously surveyed. We also adopt an efficient data indexing algorithm for faster access to the DEEP-South database. In this paper, we show some application examples of catalog-based variability searches to find new variable stars and to recover targeted asteroids. We discovered 21 new periodic variables including two eclipsing binary systems and one white dwarf/M dwarf pair candidate. We also successfully recovered astrometry and photometry of two near-earth asteroids, 2006 DZ169 and 1996 SK, along with the updated properties of their rotational signals (e.g., period and amplitude).

  • PDF

A STUDY OF THE RADIAL VELOCITY OF BX ANDROMEDAE (BX ANDROMEDAE의 시선속도 연구)

  • Lee, Chung-Uk;Han, In-Woo;Kim, Kang-Min;Kim, Chun-Hwey
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.263-274
    • /
    • 2004
  • High resolution spectroscopic observations of BX And using the BOBS (Bohyunsan Optical Echelle Spectrograph) of Bohyunsan Optical Astronomical Observatory (BOAO) were performod during 26-27, Feb. 2003. From the observations, we obtained 38 line spectra of BX And which cover all phases except the phase interval between $0.^p1$ and $0.^p3$. Both methods of the CCF (Cross-Correlation Function) and BF (Broadening Function) were used to get the radial velocities of primary and secondary components. Both velocities of the primary and secondary stars were calculated with the BF method while only primary velocities were determined with the CCF. Using new radial velocity curves, the maximum radial velocities of the primary and secondary stars were obtained as $K_1=90.1km/s\;and\;K_2=196.6km/s$, respectively. New absolute dimension of BX And was deduced with the combination of our spectroscopic solution with the photometric one of Bell et al. (1990).

LIGHT-TIME EFFECTS IN TWO ECLIPSING BINARIES V343 AQL AND CX AQR (두 개의 식쌍성 V343 Aql와 CX Aqr의 광시간 효과)

  • Kim, Chun-Hwey;Jeong, Jang-Hae;Lee, Yong-Sam
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.2
    • /
    • pp.113-124
    • /
    • 2005
  • All times of minimum light for two eclipsing binaries V343 Aql and CX Aqr were collected and analyzed to study their orbital period variations. It was found that the orbital periods for both stars have varied in a cyclical way superposed on a parabola. A secular period decrease of $-261{\times}10^{-7}$ d/y for V343 Aql was calculated while CX Aqr showed a secular period increase of $+2.55{\times}10^{-8}$8 d/y. Possible causes of secular period variations for two systems were discussed. The cyclical period variation was interpreted as light-time effect due to a third body. The resultant period, semiamplitude and eccentricity of the light time orbit were calculated to be 30.3y, 0.0092d and 0.85, respectively, for V343 Aql and 33.0y, 0.0037d and 0.64, respectively, for CX Aqr. The properties of the third bodies suggested in V343 Aql and CX Aqr systems were discussed.

Physical Properties of Transiting Planetary System TrES-3

  • Lee, Jae-Woo;Youn, Jae-Hyuck;Kim, Seung-Lee;Lee, Chung-Uk;Koo, Jae-Rim;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.65.2-65.2
    • /
    • 2010
  • We present four new transits of the planetary system TrES-3 observed between 2009 May and 2010 June. Among those, the third transit by itself indicates possible evidence for brightness disturbance, which could originate from a starspot or an overlapping double transit. A total of 107 transit times, including our measurements, were used to determine the improved ephemeris with a transit epoch of $2454185.910950\pm0.000073$ HJED (Heliocentric Julian Ephemeris Date) and an orbital period of $1.30618698\pm0.00000016$ d. We analyzed the transit light curves using the JKTEBOP code and adopting the quadratic limb-darkening law. In order to derive the physical properties of the TrES-3 system, the transit parameters are combined with the empirical relations from eclipsing binary stars and stellar evolutionary models, respectively. The stellar mass and radius obtained from a calibration using $T_{eff}$, log $\rho$ and [Fe/H] are in good agreement with those from the isochrone analysis within the uncertainties. We found that the exoplanet TrES-3b has a mass of $1.93\pm0.07\;M_{Jup}$, a radius of $1.30\pm0.04\;R_{Jup}$, a surface gravity of $28.2\pm1.1\;m\;s^{-1}$, a density of $0.82\pm0.06\;\rho_{Jup}$, and an equilibrium temperature of $1641\pm23K$.

  • PDF

V700 Cygni: A Dynamically Active W UMa-type Binary Star II

  • Kim, Chun-Hwey;Jeong, Jang-Hae
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.151-161
    • /
    • 2012
  • An intensive analysis of 148 timings of V700 Cyg was performed, including our new timings and 59 timings calculated from the super wide angle search for planets (SWASP) observations, and the dynamical evidence of the W UMa W subtype binary was examined. It was found that the orbital period of the system has varied over approximately $66^y$ in two complicated cyclical components superposed on a weak upward parabolic path. The orbital period secularly increased at a rate of $+8.7({\pm}3.4){\times}10^{-9}$ day/year, which is one order of magnitude lower than those obtained by previous investigators. The small secular period increase is interpreted as a combination of both angular momentum loss (due to magnetic braking) and mass-transfer from the less massive component to the more massive component. One cyclical component had a $20.^y3$ period with an amplitude of $0.^d0037$, and the other had a $62.^y8$ period with an amplitude of $0.^d0258$. The components had an approximate 1:3 relation between their periods and a 1:7 ratio between their amplitudes. Two plausible mechanisms (i.e., the light-time effects [LTEs] caused by the presence of additional bodies and the Applegate model) were considered as possible explanations for the cyclical components. Based on the LTE interpretation, the minimum masses of 0.29 $M_{\odot}$ for the shorter period and 0.50 $M_{\odot}$ for the longer one were calculated. The total light contributions were within 5%, which was in agreement with the 3% third-light obtained from the light curve synthesis performed by Yang & Dai (2009). The Applegate model parameters show that the root mean square luminosity variations (relative to the luminosities of the eclipsing components) are 3 times smaller than the nominal value (${\Delta}L/L_{p,s}{\approx}0.1$), indicating that the variations are hardly detectable from the light curves. Presently, the LTE interpretation (due to the third and fourth stars) is preferred as the possible cause of the two cycling period changes. A possible evolutionary implication for the V700 Cyg system is discussed.

On the Period Change of the Contact Binary GW Cephei

  • Kim, Chun-Hwey;Song, Mi-Hwa;Yoon, Joh-Na;Jeong, Jang-Hae;Jeoung, Taek-Soo;Kim, Young-Jae;Kim, Jung-Yeb
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.2
    • /
    • pp.89-96
    • /
    • 2010
  • BVR CCD observations of GW Cep were made on 15 nights in November through December 2008 with a 1-m reflector at the Jincheon station of the Chungbuk National University Observatory. Nineteen new times of minimum lights for GW Cep were determined and added to a collection of all other times of minima available to us. These data were then intensively analyzed, by reference to an O-C diagram, to deduce the general form of period variation for GW Cep. It was found that the O-C diagram could be interpreted as presenting two different forms of period change: an exclusively quasi-sinusoidal change with a period of 32.6 years and an eccentricity of 0.10; and a quasi-sinusoidal change with a period of 46.2 years and an eccentricity of 0.36 superposed on an upward parabola. Although a final conclusion is somewhat premature at present, the latter seems more plausible because late-type contact binaries allow an inter-exchange of both energy and mass between the component stars. The quasi-sinusoidal characteristics were interpreted in terms of a light-time effect due to an unseen tertiary component. The minimum masses of the tertiary component for both cases were calculated to be nearly the same as the $0.23-0.26M\;{\odot}$-ranges which is hardly detectable in a light curve synthesis. The upward parabolic O-C diagram corresponding to a secular period increase of about $4.12{\times}10^{-8}\;d/yr$ was interpreted as mass being transferred from the lesser to more massive component. The transfer rate for a conservative case was calculated to be about $2.66\;{\times}\;10^{-8}\;M_{\odot}/yr$ which is compatible with other W UMa-type contact binaries.