• Title/Summary/Keyword: eclipsing

Search Result 192, Processing Time 0.019 seconds

Seasonal and Yearly Variations of Atmospheric Extinction Coefficient at Campus Station of Chungbuk National University Observatory from 2005 to 2007 (충북대학교 천문대 교내관측소에서 측정된 2005년부터 2007년까지의 대기소광계수의 계절별, 년도별 변화)

  • Kim, Chun-Hwey;Cha, Sang-Mok;Choi, Young-Jae;Song, Mi-Hwa;Park, Jang-Ho;Won, Jang-Hee;Yim, Jin-Sun;Cho, Myung-Shin;Park, Eun-Mi;Jeong, Jang-Hae
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.2
    • /
    • pp.101-112
    • /
    • 2008
  • Systematic CCD observations of times of minimum lights for eclipsing binaries has been carried out from 2002 to 2007 at Campus Station of Chungbuk National University Observatory which is located in Cheongju city, Korea. As a by-product of our observations, photometric data for stars in CCD images taken from 2005 to 2007 were used to determine 1st order atmospheric extinction coefficient (hereafter AEC) and seasonal and yearly variations of the AECs were studied. Total nights used for determination of AECs were 57 days in 2005, 51 days in 2006, and 63 days in 2007. As a result the annual mean value of the AECs per air mass is calculated as $0.^m34{\pm}0.^m18$ for 2005, $0.^m38{\pm}0.^m19$ for 2006, and $0.^m45{\pm}0.^m20$ for 2007. These values show that the AECs and their standard deviations are two and four times, respectively, larger than those of normal observatories which are not located near large cities. Annual comparison between concentration of atmospheric fine dust and coefficient of atmospheric extinction show strong correlation between two quantities of which time variations show similar patterns. The AECs for the east sky show larger than those for the west sky. It can be easily understood by the reasonable possibility that air pollutants remain more in the east sky than in the west because the east area of Cheongju city has been more developed than the west one. In conclusion the atmospheric extinction of the night sky of Cheongju city has an annual trend of increase of $0.^m06\;airrnass^{-1}\; year^{-1}$ implying that it may take only about 13 years for Cheongju city to have 2 times brighter night sky than the present one. Our study highlights that variations of AEC can be used as an important indicator of air pollution to monitor night skies.

CCD Photometric Observations and Light Curve Synthesis of the Near-Contact Binary XZ Canis Minoris (근접촉쌍성 XZ CMi의 CCD 측광관측과 광도곡선 분석)

  • Kim, Chun-Hwey;Park, Jang-Ho;Lee, Jae-Woo;Jeong, Jang-Hae;Oh, Jun-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.141-156
    • /
    • 2009
  • Through the photometric observations of the near-contact binary, XZ CMi, new BV light curves were secured and seven times of minimum light were determined. An intensive period study with all published timings, including ours, confirms that the period of XZ CMi has varied in a cyclic period variation superposed on a secular period decrease over last 70 years. Assuming the cyclic change of period to occur by a light-time effect due to a third-body, the light-time orbit with a semi-amplitude of 0.0056d, a period of 29y and an eccentricity of 0.71 was calculated. The observed secular period decrease of $-5.26{\times}10^{-11}d/P$ was interpreted as a result of simultaneous occurrence of both a period decrease of $-8.20{\times}10^{-11}d/P$ by angular momentum loss (AML) due to a magnetic braking stellar wind and a period increase of $2.94{\times}10^{-11}d/P$ by a mass transfer from the less massive secondary to the primary components in the system. In this line the decreasing rate of period due to AML is about 3 times larger than the increasing one by a mass transfer in their absolute values. The latter implies a mass transfer of $\dot{M}_s=3.21{\times}10^{-8}M_{\odot}y^{-1}$ from the less massive secondary to the primary. The BV light curves with the latest Wilson-Devinney binary code were analyzed for two separate models of 8200K and 7000K as the photospheric temperature of the primary component. Both models confirm that XZ CMi is truly a near-contact binary with a less massive secondary completely filling Roche lobe and a primary inside the inner Roche lobe and there is a third-light corresponding to about 15-17% of the total system light. However, the third-light source can not be the same as the third-body suggested from the period study. At the present, however, we can not determine which one between two models is better fitted to the observations because of a negligible difference of $\sum(O-C)^2$ between them. The diversity of mass ratios, with which previous investigators were in disagreement, still remains to be one of unsolved problems in XZ CMi system. Spectroscopic observations for a radial velocity curve and high-resolution spectra as well as a high-precision photometry are needed to resolve some of remaining problems.