• 제목/요약/키워드: eccentric structures

검색결과 144건 처리시간 0.021초

Evaluation of performance of eccentric braced frame with friction damper

  • Vaseghi Amiri, J.;Navayinia, B.;Navaei, S.
    • Structural Engineering and Mechanics
    • /
    • 제39권5호
    • /
    • pp.717-732
    • /
    • 2011
  • Nonlinear dynamic analysis and evaluation of eccentric braced steel frames (EBF) equipped with friction damper (FD) is studied in this research. Previous studies about assessment of seismic performance of steel braced frame with FD have been generally limited to installing this device in confluence of cross in concentrically braced frame such chevron and x-bracing. Investigation is carried out with three types of steel frames namely 5, 10 and 15 storeys, representing the short, medium and high structures respectively in series of nonlinear dynamic analysis and 10 slip force values subjected to three different earthquake records. The proper place of FD, rather than providing them at all level is also studied in 15 storey frame. Four dimensionless indices namely roof displacement, base shear, dissipated energy and relative performance index (RPI) are determined in about 100 nonlinear dynamic analyses. Then average values of maximum roof displacement, base shear, energy dissipated and storey drift under three records for both EBF and EBF equipped with friction damper are obtained. The result indicates that FD reduces the response compared to EBF and is more efficient than EBF for taller storey frames.

The behavior of lightweight aggregate concrete filled steel tube columns under eccentric loading

  • Elzien, Abdelgadir;Ji, Bohai;Fu, Zhongqiu;Hu, Zhengqing
    • Steel and Composite Structures
    • /
    • 제11권6호
    • /
    • pp.469-488
    • /
    • 2011
  • This paper consists of two parts; the first part describes the laboratory work concerning the behavior of lightweight aggregate concrete filled steel tubes (LACFT). Based on eccentricity tests, fifty-four specimens with different slenderness ratios (L/D= 3, 7, and 14) were tested. The main parameters varied in the test are: load eccentricity; steel ratio; and slenderness ratio. The standard load-strain curves of LACFT columns under eccentric loading were summarized and significant parameters affecting LACFT column's bearing capacity, failure mechanism and failure mode such as confinement effect and bond strength were all studied and analyzed through the comparison with predicted strength of concrete filled steel tube columns (CFT) using the existing codes such as AISC-LRFD (1999), CHN DBJ 13-51-2003 (2003) and CHN CECS 28:90 (1990). The second part of this paper presents the results of parametric study and introduces a practical and accurate method for determination of the maximum compressive strength of confined concrete core ($f_{max}$), In addition to, the study of the effect of aspect-ratio and length-width ratio on the yield stress of steel tubes ( $f_{sy}$) under biaxial state of stress in CFT columns and the effect of these two factors on the ultimate load carrying capacity of axially loaded CFT/LACFT columns.

Experimental study on the compression of concrete filled steel tubular latticed columns with variable cross section

  • Yang, Yan;Zhou, Jun;Wei, Jiangang;Huang, Lei;Wu, Qingxiong;Chen, Baochun
    • Steel and Composite Structures
    • /
    • 제22권3호
    • /
    • pp.663-675
    • /
    • 2016
  • The effects of slenderness ratio, eccentricity and column slope on the load-carrying capacities and failure modes of variable and uniform concrete filled steel tubular (CFST) latticed columns under axial and eccentric compression were investigated and compared in this study. The results clearly show that all the CFST latticed columns with variable cross section exhibit an overall failure, which is similar to that of CFST latticed columns with a uniform cross section. The load-carrying capacity decreases with the increase of the slenderness ratio or the eccentricity. For 2-m specimens with a slenderness ratio of 9, the ultimate load-carrying capacity is increased by 3% and 5% for variable CFST latticed columns with a slope of 1:40 and 1:20 as compared with that of uniform CFST latticed columns, respectively. For the eccentrically compressed variable CFST latticed columns, the strain of the columns at the loading side, as well as the difference in the strain, increases from the bottom to the cap, and a more significant increase in strain is observed in the cross section closer to the column cap.

Simulation of monopile-wheel hybrid foundations under eccentric lateral load in sand-over-clay

  • Zou, Xinjun;Wang, Yikang;Zhou, Mi;Zhang, Xihong
    • Geomechanics and Engineering
    • /
    • 제28권6호
    • /
    • pp.585-598
    • /
    • 2022
  • The monopile-friction wheel hybrid foundation is an innovative solution for offshore structures which are mainly subjected to large lateral eccentric load induced by winds, waves, and currents during their service life. This paper presents an extensive numerical analysis to investigate the lateral load and moment bearing performances of hybrid foundation, considering various potential influencing factors in sand-overlaying-clay soil deposits, with the complex lateral loads being simplified into a resultant lateral load acting at a certain height above the mudline. Finite element models are generated and validated against experimental data where very good agreements are obtained. The failure mechanisms of hybrid foundations under lateral loading are illustrated to demonstrate the effect of the friction wheel in the hybrid system. Parametric study shows that the load bearing performances of the hybrid foundation is significantly dependent of wheel diameter, pile embedment depth, internal friction angle of sand, loading eccentricity (distance from the load application point to the ground level), and the thickness of upper sandy layer. Simplified empirical formulae is proposed based on the numerical results to predict the corresponding lateral load and moment bearing capacities of the hybrid foundation for design application.

Performance-based plastic design of buckling-restrained braced frames with eccentric configurations

  • Elnaz Zare;Mohammad Gholami;Esmail Usefvand;Mojtaba Gorji Azandariani
    • Earthquakes and Structures
    • /
    • 제24권5호
    • /
    • pp.317-331
    • /
    • 2023
  • The buckling-restrained braced frames with eccentric configurations (BRBFECs) are stable cyclic behavior and high energy absorption capacity. Furthermore, they have an architectural advantage for creating openings like eccentrically braced frames (EBFs). In the present study, it has been suggested to use the performance-based plastic design (PBPD) method to calculate the design base shear of the BRBFEC systems. Moreover, in this study, to reduce the required steel material, it has been suggested to use the performance-based practical design (PBPD) method instead of the force-based design (FBD) method for the design of this system. The 3-, 6-, and 9-story buildings with the BRBFEC system were designed, and the finite element models were modeled. The seismic performance of the models was investigated using two suits of ground motions representing the maximum considered earthquake (MCE) and design basis earthquake (DBE) seismic hazard levels. The results showed that the models designed with the suggested method, which had lower weights compared to those designed with the FBD method, had a desirable seismic performance in terms of maximum story drift and ductility demand under earthquakes at both MCE and DBE seismic hazard levels. This suggests that the steel weights of the structures designed with the PBPD method are about 13% to 18% lesser than the FBD method. However, the residual drifts in these models were higher than those in the models designed with the FBD method. Also, in earthquakes at the DBE hazard level, the residual drifts in all models except the PBPD-6s and PBPD-9s models were less than the allowable reparability limit.

인장막구조물의 단축인장응력에 관한 연구 (A Study on Uniaxial Tensile Stress of Tensioned Membrane)

  • 강주원;김재열
    • 한국공간구조학회논문집
    • /
    • 제11권3호
    • /
    • pp.85-93
    • /
    • 2011
  • 막재는 매우 유연하여 압축력이 가해지면 주름이 생길 수 있다. 이러한 주름은 막재료를 재단하거나 접합하는 과정에서 생기는 제작오차, 시공오차 및 장기간의 편심하중에 의해 막재 표면에 주름이 발생할 수 있다. 본 논문에서는 막재 요소가 단축응력상태가 되어 주름을 일으키는 과정을 기술하고 주름을 체크할 수 있는 방법을 제안하였다. 막구조물에 대한 형상해석이 완료된 후 실제 하중을 적용한 응력-변형해석 시, 주응력을 계산하여 주응력 2가 0보다 작은 경우 주름이 발생한 것으로 간주되었다. 적용성을 알아보기 위해서 먼저 안장형 구조물을 해석하였고, 실제구조물인 수원야외 음악당 지붕구조에 설치된 막구조물과 1975년 오키나와 엑스포에 세워졌던 막구조물을 예제로 하여 본 논문에서 제안된 방법을 적용하여 해석해 보았다.

Compression Behavior of Wood Stud in Light Framed Wall as Functions of Moisture, Stress and Temperature

  • Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제34권5호
    • /
    • pp.19-28
    • /
    • 2006
  • There has been considerable research in recent times in light-timber med structures in fires. These structures have included horizontal (floor-like) panels in bending and walls under eccentric and approximately concentric vertical loading. It has been shown that compression properties are the most dominant mechanical properties in affecting structural response of these structures in fire. Compression properties have been obtained by various means as functions of one variable only, temperature. It has always been expected that compression properties would be significantly affected by moisture and stress, as well. However, these variables have been largely ignored to simplify the complex problem of predicting the response of light-timber framed structures in fire. Full-scale experiments on both the panels and walls have demonstrated the high level of significance of moisture and stress for a limited range of conditions. Described in this paper is an overview of these conditions and experiments undertaken to obtain compression properties as a functions of moisture, stress and temperature. The experiments limited temperatures to $20{\sim}100^{\circ}C$. At higher temperatures moisture vaporizes and moisture and stress are less significant. Described also is a creep model for wood at high temperatures.

Modified seismic analysis of multistory asymmetric elastic buildings and suggestions for minimizing the rotational response

  • Georgoussis, George K.
    • Earthquakes and Structures
    • /
    • 제7권1호
    • /
    • pp.39-55
    • /
    • 2014
  • A modified procedure is presented for assessing the seismic response of elastic non-proportionate multistory buildings. This procedure retains the simplicity of the methodology presented by the author in earlier papers, but it presents higher accuracy in buildings composed by very dissimilar types of bents. As a result, not only frequencies and peak values of base resultant forces are determined with higher accuracy, but also the location of the first mode center of rigidity (m1-CR). The closeness of m1-CR with the axis passing through the centers of floor masses (mass axis) implies a reduced rotational response and it is demonstrated that in elastic systemsa practically translational response is obtained when this point lies on the mass axis.Besides, when common types of buildings are detailed as planar structures under a code load, this response is maintained in the inelastic phase of their response as a result of the almost concurrent yielding of all the resisting bents. This property of m1-CR can be used by the practicing engineer as a guideline to form a structural configuration which will sustain minimum rotational response, simply by allocating the resisting elements in such a way that this point lies close to the mass axis. Inelastic multistory building structures, detailed as above, may be regarded as torsionally balanced multistory systems and this is demonstrated in eight story buildings, composed by dissimilar bents, under the ground motions of Kobe 1995 (component KJM000) and Friuli 1976 (component Tolmezzo E-W).

비정형 구조물의 평면 회전축과 코어의 이동에 따른 지진응답분석 (Analysis of Seismic Response by the Movement of the Plane Rotation Axis and the Core of Atypical Structures)

  • 이다혜;김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제22권1호
    • /
    • pp.33-40
    • /
    • 2022
  • When the center of stiffness and the center of mass of the structure differ under the seismic load, torsion is caused by eccentricity. In this study, an analysis model was modeled in which the positions of the core and the plane rotation axis of a 60-story torsional atypical structure with a plane rotation angle of 1 degree per floor were different. The structural behavior of the analysis model was analyzed, and the earthquake response behavior of the structure was analyzed based on the time history analysis results. As a result, as the eccentricity of the structure increased, the eccentricity response was amplified in the high-rise part, and the bending and torsional behavior responses were complex in the low-order vibration mode. As a result of the analysis, the maximum displacement and story drift ratio increased due to the torsional behavior. The maximum story shear force and the story absolute maximum acceleration showed similarities for each analysis model according to the shape of the vibration mode of the analysis model.

유전자 알고리즘을 이용한 비대칭 강성 구조물의 내진보강 최적설계 (Optimal design of seismic reinforcement for structures with asymmetric rigidity plans using genetic algorithm)

  • 이준호;김유성;성은희
    • 한국공간구조학회논문집
    • /
    • 제24권2호
    • /
    • pp.65-73
    • /
    • 2024
  • In this study, we propose an optimal design method by applying the Prefabricated Buckling Restrained Brace (PF-BRB) to structures with asymmetrically rigidity plan. As a result of the PF-BRB optimal design of a structure with an asymmetrically rigidity plan, it can be seen that the reduction effect of dynamic response is greater in the case of arrangement considering the asymmetric distribution of stiffness (Asym) than in the case of arrangement in the form of a symmetric distribution (Sym), especially It was confirmed that at an eccentricity rate of 20%, the total amount of reinforced PF-BRBs was also small. As a result of analyzing the dynamic response characteristics according to the change in eccentricity of the asymmetrically rigidity plan, the distribution of the reinforced PF-BRB showed that the larger the eccentricity, the greater the amount of damper distribution around the eccentric position. Additionally, when comparing the analysis models with an eccentricity rate of 20% and an eccentricity rate of 12%, the response reduction ratio of the 20% eccentricity rate was found to be large.