• Title/Summary/Keyword: eastern tropical pacific

Search Result 55, Processing Time 0.022 seconds

On the Study of Intraseasonal and Interannual Oscillations Simulation by using Coupled Model (접합모형을 이용한 경년 및 계절안 진동 모사실험 연구)

  • Ahn Joong-Bae
    • Journal of Environmental Science International
    • /
    • v.8 no.6
    • /
    • pp.645-652
    • /
    • 1999
  • In order to simulate and investigate the major characteristics of El Nino/Southern Oscillation(ENSO) and Madden Jullian Oscillation(MJO), an intermediate type atmosphere-ocean coupled model is developed and their results are examined. The atmosphere model is a time-dependent non-linear perturbation moist model which can determine the internal heating for itself. The counterpart of the atmosphere model is GCM-type tropical ocean model which has fine horizontal and vertical grid resolutions. In the coupled experiment, warm SST anomaly and increased precipitation and eastward wind and current anomalies associated with ENSO and MJO are properly simulated in Pacific and Indian Oceans. In spite of some discrepancies in simulation MJO, the observed atmospheric and oceanic low-frequency characteristics in the tropics are successfully identified. Among them, positive SST anomalies centered at the 100m-depth of tropical eastern-central Pacific due to the eastward advection of warm water and reduced equatorial upwelling, and negative anomalies in the Indian and western Pacific seem to be the fundamental features of tropical low-frequency oscillations.

  • PDF

Interannual Variabilities of Sea Surface Temperature and Sea Level Anomaly related to ENSO in the Tropical and North Pacific Ocean System (열대 및 북태평양에서 ENSO와 관련된 표층수온과 해면고도의 경년 변동성)

  • Kim, Eung;Jeon, Dong-Chull
    • Ocean and Polar Research
    • /
    • v.30 no.3
    • /
    • pp.313-324
    • /
    • 2008
  • In order to understand the variation of ENSO-related oceanic environments in the tropical and North Pacific Ocean, spatio-temporal variations of sea surface temperature anomaly (SSTA) and sea surface height anomaly (SSHA) are analyzed from distributions of complex empirical orthogonal functions (CEOF). Correlations among warm pool variation, southern oscillation index, and ocean surface currents were also examined with respect to interannual variability of the warm pool in western tropical Pacific. Spatio-temporal distributions of the first CEOF modes for SSTA and SSHA indicate that their variabilities are associated with ENSO events, which have a variance over 30% in the North Pacific. The primary reasons for their variabilities are different; SST is predominantly influenced by the change of barrier layer thickness, while SSH fluctuates with the same phase as propagation of an ENSO episode in the zonal direction. Horizontal boundary of warm pool area, which normally centered around $149^{\circ}E$ in the tropics, seemed to be expanded to the middle and eastern tropical regions by strong zonal currents through the mature phase of an ENSO episode.

The Seasonal Forecast Characteristics of Tropical Cyclones from the KMA's Global Seasonal Forecasting System (GloSea6-GC3.2) (기상청 기후예측시스템(GloSea6-GC3.2)의 열대저기압 계절 예측 특성)

  • Sang-Min Lee;Yu-Kyung Hyun;Beomcheol Shin;Heesook Ji;Johan Lee;Seung-On Hwang;Kyung-On Boo
    • Atmosphere
    • /
    • v.34 no.2
    • /
    • pp.97-106
    • /
    • 2024
  • The seasonal forecast skill of tropical cyclones (TCs) in the Northern Hemisphere from the Korea Meteorological Administration (KMA) Global Seasonal Forecast System version 6 (GloSea6) hindcast has been verified for the period 1993 to 2016. The operational climate prediction system at KMA was upgraded from GloSea5 to GloSea6 in 2022, therefore further validation was warranted for the seasonal predictability and variability of this new system for TC forecasts. In this study, we examine the frequency, track density, duration, and strength of TCs in the North Indian Ocean, the western North Pacific, the eastern North Pacific, and the North Atlantic against the best track data. This methodology follows a previous study covering the period 1996 to 2009 published in 2020. GloSea6 indicates a higher frequency of TC generation compared to observations in the western North Pacific and the eastern North Pacific, suggesting the possibility of more TC generation than GloSea5. Additionally, GloSea6 exhibits better interannual variability of TC frequency, which shows relatively good correlation with observations in the North Atlantic and the western North Pacific. Regarding TC intensity, GloSea6 still underestimates the minimum surface pressures and maximum wind speeds from TCs, as is common among most climate models due to lower horizontal resolutions. However, GloSea6 is likely capable of simulating slightly stronger TCs than GloSea5, partly attributed to more frequent 6-hourly outputs compared to the previous daily outputs.

Characteristics of Tropical Cyclone Activity Influenced by Decadal Variability of SST (해수면 온도의 10년 주기 변동에 영향을 받는 Tropical Cyclone의 특징)

  • Kim, Dong-Hyeok;Kang, In-Sik
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.485-492
    • /
    • 2008
  • This study confirms that a decadal variation of the SST (Sea Surface Temperature) in the WNP (Western North Pacific) has an influence on the genesis and passage ofa Tropical Cyclone. The decadal mode was obtained by calculating the SST anomaly on the domain $150^{\circ}E-190^{\circ}E$, and $5^{\circ}S-5^{\circ}N$. Such decadal variation was subsequently analyzed to confirm that it is a dominant mode in central Pacific region. Next, after classifying the years into relatively positive years and relatively negative years, the characteristics of Tropical Cyclone in each year, such as a genesis and passage frequency, were investigated. Compared to the relatively negative years, during the relatively positive years, the location of Tropical Cyclone genesis was biased toward South-Eastern region, while the characteristics of the cyclone were more distinct during late season of the year trom September to December than in mid season from June to August. Examining the movement passage through the observation of passage fiequency, there was a significant difference between positive year and negative year in their passages at a 90% confidence level. Moreover, the number of Tropical Cyclone, maximum wind, and life time also showed higher values in positive years than in negative years. These features were confirmed by examining the 850hPa cyclonic flow field, vorticity field, and vertical wind shear field, all of which contribute to the genesis of a Tropical Cyclone.

Relationship between the Tropical Sea Surface Temperature Distribution and Initiation Timing of the Typhoon Season in the Northwestern Pacific (열대 해수면 온도 분포와 북서태평양 태풍의 계절적 활동 시작일 변동 사이의 관련성)

  • Kim, Donghee;Kim, Hyeong-Seog
    • Journal of Climate Change Research
    • /
    • v.8 no.1
    • /
    • pp.11-19
    • /
    • 2017
  • This study examined the relationship between the initiation timing typhoon season in the Northwestern Pacific and the tropical sea surface temperature (SST) using a numerical simulation. The initiation timing of the typhoon season is closely associated with SSTs over the Indian Ocean (IO) and the eastern Pacific (EP) in the preceding winter and early-spring. The experiment based on the Weather and Research Forecast (WRF) model showed that the start date of the typhoon season is delayed for about one month when the SSTs over the IO and the EP increase in the preceding winter. The forced tropical SST pattern induces anticyclonic anomalies in the Northwestern Pacific, which is an unfavorable condition for typhoon development, and hence it could delay the initiation of the typhoon season.

Seasonal Forecasting of Tropical Storms using GloSea5 Hindcast (기후예측시스템(GloSea5) 열대성저기압 계절예측 특성)

  • Lee, Sang-Min;Lee, Jo-Han;Ko, A-Reum;Hyun, Yu-Kyung;Kim, YoonJae
    • Atmosphere
    • /
    • v.30 no.3
    • /
    • pp.209-220
    • /
    • 2020
  • Seasonal predictability and variability of tropical storms (TCs) simulated in the Global Seasonal Forecast System version 5 (GloSea5) of the Korea Meteorological Administration (KMA) is assessed in Northern Hemisphere in 1996~2009. In the KMA, the GloSea5-Global Atmosphere version 3.0 (GloSea5-GA3) that was previously operated was switched to the GloSea5-Global Coupled version 2.0 (GloSea5-GC2) with data assimilation system since May 2016. In this study, frequency, track, duration, and strength of the TCs in the North Indian Ocean, Western Pacific, Eastern Pacific, and North Atlantic regions derived from the GloSea5-GC2 and GloSea5-GA3 are examined against the best track data during the research period. In general, the GloSea5 shows a good skill for the prediction of seasonally averaged number of the TCs in the Eastern and Western Pacific regions, but underestimation of those in the North Atlantic region. Both the GloSea5-GA3 and GC2 are not able to predict the recurvature of the TCs in the North Western Pacific Ocean (NWPO), which implies that there is no skill for the prediction of landfalls in the Korean peninsula. The GloSea5-GC2 has higher skills for predictability and variability of the TCs than the GloSea5-GA3, although continuous improvements in the operational system for seasonal forecast are still necessary to simulate TCs more realistically in the future.

Hydrographic Structure Along $131.5^{\circ}W$ in the Northeastern Pacific in July-August 2005 (2005년 7-8월에 관측한 북동태평양 $131.5^{\circ}W$의 해수특성 및 해양구조)

  • Shin, Hong-Ryeol;Hwang, Sang-Chul
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.190-199
    • /
    • 2008
  • To investigate hydrographic structure and characteristics of the tropical ocean in the eastern and the western Pacific, CTD(Conductivity-Temperature-Depth) data along $131^{\circ}W$ and $137^{\circ}-142^{\circ}E$ in July-August 2005 were analyzed. Sea surface temperature along $131.5^{\circ}W$ in summer is highest in the Equatorial Counter Current(ECC) because of the high-temperature water greater than $28^{\circ}C$ moving through the ECC from the western Pacific to the eastern Pacific in spring and summer. Based on the evidence of the presence of low salinity and high dissolved oxygen water in the North Equatorial Current(NEC), we suggested that the low salinity water moved from the Gulf of Panama to the east of Philippine along the North Equatorial Current(NEC). The South Equatorial Current(SEC) had the most saline water from surface to deep layer because the saline water from the Subtropical South Pacific Ocean moved to the north. The salinity minimum layer was observed at 500-1500 m depth along $131.5^{\circ}W$. The water mass with the salinity minimum layer in the north of $5^{\circ}N$ came from the North Pacific Intermediate Water(NPIW) and that in the south of $5^{\circ}N$ came from the Antarctic Intermediate Water(AAIW), which was more saline than the NPIW. Cyclonic cold eddy with a diameter of about 200km was found in $4-6^{\circ}N$. Sea surface temperature along $131.5^{\circ}W$ in the eastern Pacific was lower than along $137^{\circ}-142^{\circ}E$ in the western Pacific; on the other hand, sea surface salinity in the eastern Pacific was higher than in the western Pacific. Subsurface saline water from the Subtropical South Pacific Ocean was less saline in the eastern Pacific than in the western Pacific. Salinity and density(${\sigma}_{\theta}$) of the salinity minimum layer south of $14^{\circ}N$ was higher in the eastern Pacific than in the western Pacific.

Pacific Equatorial Sea Surface Temperature Variation During the 2015 El Niño Period Observed by Advanced Very-High-Resolution Radiometer of NOAA Satellites

  • Lee, Seongsuk;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.105-109
    • /
    • 2018
  • El $Ni{\tilde{n}}o$ is the largest fluctuation in the climate system, and it can lead to effects influencing humans all over the world. An El $Ni{\tilde{n}}o$ occurs when sea surface temperatures in the central and eastern tropical Pacific Ocean become substantially higher than average. We investigated the change in sea surface temperature in the Pacific Ocean during the El $Ni{\tilde{n}}o$ period of 2015 and 2016 using the advanced very-high-resolution radiometer (AVHRR) of NOAA Satellites. We calculated anomalies of the Pacific equatorial sea surface temperature for the normal period of 1981-2010 to identify the variation of the 2015 El $Ni{\tilde{n}}o$ and warm water area. Generally, the warm water in the western tropical Pacific Ocean shifts eastward along the equator toward the coast of South America during an El $Ni{\tilde{n}}o$ period. However, we identified an additional warm water region in the $Ni{\tilde{n}}o$ 1+2 and Peru coastal area. This indicates that there are other factors that increase the sea surface temperature. In the future, we will study the heat coming from the bottom of the sea to understand the origin of the heat transport of the Pacific Ocean.

Regional Sea Level Variability in the Pacific during the Altimetry Era Using Ensemble Empirical Mode Decomposition Method (앙상블 경험적 모드 분해법을 사용한 태평양의 지역별 해수면 변화 분석)

  • Cha, Sang-Chul;Moon, Jae-Hong
    • Ocean and Polar Research
    • /
    • v.41 no.3
    • /
    • pp.121-133
    • /
    • 2019
  • Natural variability associated with a variety of large-scale climate modes causes regional differences in sea level rise (SLR), which is particularly remarkable in the Pacific Ocean. Because the superposition of the natural variability and the background anthropogenic trend in sea level can potentially threaten to inundate low-lying and heavily populated coastal regions, it is important to quantify sea level variability associated with internal climate variability and understand their interaction when projecting future SLR impacts. This study seeks to identify the dominant modes of sea level variability in the tropical Pacific and quantify how these modes contribute to regional sea level changes, particularly on the two strong El $Ni{\tilde{n}}o$ events that occurred in the winter of 1997/1998 and 2015/2016. To do so, an adaptive data analysis approach, Ensemble Empirical Mode Decomposition (EEMD), was undertaken with regard to two datasets of altimetry-based and in situ-based steric sea levels. Using this EEMD analysis, we identified distinct internal modes associated with El $Ni{\tilde{n}}o$-Southern Oscillation (ENSO) varying from 1.5 to 7 years and low-frequency variability with a period of ~12 years that were clearly distinct from the secular trend. The ENSO-scale frequencies strongly impact on an east-west dipole of sea levels across the tropical Pacific, while the low-frequency (i.e., decadal) mode is predominant in the North Pacific with a horseshoe shape connecting tropical and extratropical sea levels. Of particular interest is that the low-frequency mode resulted in different responses in regional SLR to ENSO events. The low-frequency mode contributed to a sharp increase (decrease) of sea level in the eastern (western) tropical Pacific in the 2015/2016 El $Ni{\tilde{n}}o$ but made a negative contribution to the sea level signals in the 1997/1998 El $Ni{\tilde{n}}o$. This indicates that the SLR signals of the ENSO can be amplified or depressed at times of transition in the low-frequency mode in the tropical Pacific.

ENSO Response to Global Warming as Simulated by ECHO-G/S (ECHO-G/S에 나타난 기후변화에 따른 엘니뇨 변화 특성 분석)

  • Lee, Hyo-Shin;Kwon, Won-Tae;Ahn, Joong-Bae;Boo, Kyung-On;Ch, Yu-Mi
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.365-379
    • /
    • 2007
  • Global warming may shift the properties and dynamics of ENSO. We study the changes in ENSO characteristics in a coupled general circulation model, ECHO-G/S. First, we analyse the mean state changes by comparing present day simulation and various high $CO_2$ climates. The model shows a little El Nino-like changes in the sea surface temperature and wind stress in the eastern tropical Pacific. As the mean temperature rises, the ENSO amplitude and the frequency of strong El Ninos and La Nina decrease. The analysis shows that the weakening of the oceanic sensitivities is related to the weakening of ENSO. In addition to the surface changes, the remote subsurface sea temperature response in the western Pacific to the wind stress in the eastern Pacific influences the subsequent ENSO amplitude. However, ENSO amplitude does not show linear response to the greenhouse gas concentrations.