• Title/Summary/Keyword: earthquake-resistant performance

Search Result 123, Processing Time 0.021 seconds

Improvement and Evaluation for Seismic Resistant Capacity of Reinforced Concrete Frame and Braced System under Load Reversals (반복하중을 받는 철근콘크리트 골조 및 보강시스템의 내진성능 평가 및 개선)

  • 김광연;하기주;신종학;이상목;이영범;조용태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.109-114
    • /
    • 2000
  • Recently, it is required to improve the structural performance, such as durability and earthquake resistant capacity due to the deterioration of structural components in the existing reinforced concrete building with the old aging and transition of design code. Therefore, the new technology should be developed, such as seismic retrofit and improvement of structural performance in the existing reinforced concrete building. This analytical study was performed to verify the effects of basic and reinforcing system in the reinforced concrete building. The analytical results by nonlinear finite element method were compared with the experimental results and the comparisons are judged to be good.

  • PDF

Improvement and Evaluation of Seismic Performance of Reinforced High-Strength Concrete Beam-Column Joints with Advanced Reinforcing Detailings and High Ductile Fiber-Reinforced Mortar (고성능 배근상세 및 HDFRM을 활용한 고강도 철근콘크리트 보-기둥 접합부 내진성능 평가 및 개선)

  • Ha, Gee-Joo;Sin, Jong-Hak;Yi, Dong-Ryul;Hong, Kun-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.5-8
    • /
    • 2008
  • In this dissertation, experimental research was carried out to study the hysteretic behavior of reinforced high-strength concrete beam-column joints designed by high performance techniques, such as application of high-strength concrete, reducing of joint regions damage, moving of beam plastic hinge, advanced reinforcing detailings and High Ductile Fiber-Reinforced Mortar.(HDFRM) Specimens(HJCI), designed by the development of earthquake-resistant performance, moving of beam plastic hinge, and new design approach, were attained the moving of beam plastic hinge and developed significantly earthquake-resistant performance of such joints. Specimens(HJRP), designed with HDFRM, were indicated more stable hysteresis behavior, high load carrying capacity, and distributed crack pattern of specimens HJRP when compared to the control specimen.

  • PDF

Seismic Reinforcement of Rural Low-rise Building using Carbon Fiver Plate (탄소판가새를 이용한 농촌 저층건물의 내진보강)

  • Jung, Dong-Jo;Choi, Sung-Dae
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.16 no.2
    • /
    • pp.1-8
    • /
    • 2014
  • In the past, Korea was classified as a region not affected by earthquakes. However, recent increase of earthquakes has forced to strengthen standards of earthquake resistant designs of structures to minimize seismic damage. In addition, it was thought that masonry infill walls in buildings are only acting as partitions, so these walls are not considered in analyzing building structures. But it was found that when seismic loads are applied to a structure with masonry infill walls, the walls affect the structure. Accordingly, this study conducted nonlinear static analyses for a structure constructed before applying earthquake resistant designs in two cases: when considering masonry walls and when not. The result showed that the seismic performance of the structure is insufficient. Thus, the structural resistance of the structure was also studied in two cases: when reinforcing with steel plate braces and when using carbon fiber braces. In the two cases reinforcing two different stiffeners, it was appeared that the behaviors of the structure were similar, though the cross-section area of a carbon fiber brace used to reinforcing the structure is only 12.6% of a steel plate brace, and its weight is only 2.8%. Thus, the reinforcing effect of the thin, light-weighted carbon fiber brace is much larger than that of the steel plate brace, when considering usability and constructability of both materials.

Fragility assessment of RC-MRFs under concurrent vertical-horizontal seismic action effects

  • Farsangi, Ehsan Noroozinejad;Tasnimi, Abbas Ali;Mansouri, Babak
    • Computers and Concrete
    • /
    • v.16 no.1
    • /
    • pp.99-123
    • /
    • 2015
  • In this study, structural vulnerability of reinforced concrete moment resisting frames (RC-MRFs) by considering the Iran-specific characteristics is investigated to manage the earthquake risk in terms of multicomponent seismic excitations. Low and medium rise RC-MRFs, which constitute approximately 80-90% of the total buildings stock in Iran, are focused in this fragility-based assessment. The seismic design of 3-12 story RC-MRFs are carried out according to the Iranian Code of Practice for Seismic Resistant Design of Buildings (Standard No. 2800), and the analytical models are formed accordingly in open source nonlinear platforms. Frame structures are categorized in three subclasses according to the specific characteristics of construction practice and the observed seismic performance after major earthquakes in Iran. Both far and near fields' ground motions have been considered in the fragility estimation. An optimal intensity measure (IM) called Sa, avg and beta probability distribution were used to obtain reliable fragility-based database for earthquake damage and loss estimation of RC buildings stock in urban areas of Iran. Nonlinear incremental dynamic analyses by means of lumped-parameter based structural models have been simulated and performed to extract the fragility curves. Approximate confidence bounds are developed to represent the epistemic uncertainties inherent in the fragility estimations. Consequently, it's shown that including vertical ground motion in the analysis is highly recommended for reliable seismic assessment of RC buildings.

Seismic Analysis of Firefighting Pipe Networks (소방배관 형상에 따른 배관 내진해석)

  • Choi, Ho-Sung;Lee, Jae-Ou
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.149-154
    • /
    • 2019
  • The stability of firefighting pipes is crucial in the event of an earthquake. In Korea, specification-based designs are used in accordance with NFSC. However, engineering performance-based designs are used for buildings that have special requirements. For firefighting pipes, tree type pipe networks are usually utilized in buildings; however, they are characterized by several limitations. Hence, grid type and loop type networks are being utilized lately. Earthquake-resistant designs for firefighting pipes in Korea utilize NFPA 13 as the cookbook. Nevertheless, an engineering analysis is required to verify its reliability. The NFPA 13 standard used in Korea is a design method for engineers who lack earthquake engineering analysis knowledge of pipes and adapt ASCE and ASME guidelines. Earthquake resistant designs in Korea review braces only. Hence, various analyses under load conditions, such as the internal pressure of a pipe, force exerted by a continuous load, and an earthquake, are required to ensure reliability. An engineering earthquake-resistance analysis showed that tree type pipe networks are less stable than grid and loop type pipe networks. A comparison of earthquake-resistance analysis based on stress and strain revealed that strain analysis exhibited a conservative result value in the range of over-stress. Therefore, for the earthquake-resistance analysis of pipes, it is rational that engineers perform analysis to achieve the required standards through engineering analysis rather than uniform calculations, which should also be analyzed considering various analysis conditions.

Evaluation of the seismic performance of special moment frames using incremental nonlinear dynamic analysis

  • Khorami, Majid;Khorami, Masoud;Motahar, Hedayatollah;Alvansazyazdi, Mohammadfarid;Shariati, Mahdi;Jalali, Abdolrahim;Tahir, M.M.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.259-268
    • /
    • 2017
  • In this paper, the incremental nonlinear dynamic analysis is used to evaluate the seismic performance of steel moment frame structures. To this purpose, three special moment frame structure with 5, 10 and 15 stories are designed according to the Iran's national building code for steel structures and the provisions for design of earthquake resistant buildings (2800 code). Incremental Nonlinear Analysis (IDA) is performed for 15 different ground motions, and responses of the structures are evaluated. For the immediate occupancy and the collapse prevention performance levels, the probability that seismic demand exceeds the seismic capacity of the structures is computed based on FEMA350. Also, fragility curves are plotted for three high-code damage levels using HASUS provisions. Based on the obtained results, it is evident that increase in the height of the frame structures reduces the reliability level. In addition, it is concluded that for the design earthquake the probability of exceeding average collapse prevention level is considerably larger than high and full collapse prevention levels.9.

A ductile steel damper-brace for low-damage framed structures

  • Javidan, Mohammad Mahdi;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.325-337
    • /
    • 2022
  • In this research, an earthquake-resistant structural system consisting of a pin-connected steel frame and a bracing with metallic fuses is proposed. Contrary to the conventional braced frames, the main structural elements are deemed to remain elastic under earthquakes and the seismic energy is efficiently dissipated by the damper-braces with an amplification mechanism. The superiority of the proposed damping system lies in easy manufacture, high yield capacity and energy dissipation, and an effortless replacement of damaged fuses after earthquake events. Furthermore, the stiffness and the yield capacity are almost decoupled in the proposed damper-brace which makes it highly versatile for performance-based seismic design compared to most other dampers. A special attention is paid to derive the theoretical formulation for nonlinear behavior of the proposed damper-brace, which is verified using analytical results. Next, a direct displacement-based design procedure is provided for the proposed system and an example structure is designed and analyzed thoroughly to check its seismic performance. The results show that the proposed system designed with the provided procedure satisfies the given performance objective and can be used for developing highly efficient low-damage structures.

Study on Establishing Earthquake-resistance Reinforcement Measures for Earthquake Disasters in National Industrial Complexes (국가산업단지의 지진재난 내진보강대책 수립 연구)

  • Chang Young Song
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.882-896
    • /
    • 2023
  • Pupose: The purpose is to prepare safety management and seismic reinforcement measures that can effectively improve the potential risks of earthquake-resistant design and the deficiencies of safety guidance and inspection of factory facilities in national industrial complexes. Method: In this study, problems and improvement measures were derived through investigation and analysis of overall earthquake disaster safety management, such as safety management status and management system in preparation for earthquake disasters in national industrial complexes. was implemented to suggest improvement plans based on facility types and structural characteristics. Result: In conclusion, the problems of safety management and seismic reinforcement in preparation for earthquake disasters in national industrial complexes were summarized and classified into four types (seismic performance evaluation and related system supplementation, authority of tenant companies and local governments, seismic reinforcement and safety management support measures, organizational structure capacity building) to derive improvement measures. Conclusion: Based on this, seismic reinforcement measures that companies in national industrial complexes should implement in preparation for earthquake disasters were prepared, and detailed plans for each measure were presented.

Energy dissipation system for earthquake protection of cable-stayed bridge towers

  • Abdel Raheem, Shehata E.;Hayashikawa, Toshiro
    • Earthquakes and Structures
    • /
    • v.5 no.6
    • /
    • pp.657-678
    • /
    • 2013
  • For economical earthquake resistant design of cable-stayed bridge tower, the use of energy dissipation systems for the earthquake protection of steel structures represents an alternative seismic design method where the tower structure could be constructed to dissipate a large amount of earthquake input energy through inelastic deformations in certain positions, which could be easily retrofitted after damage. The design of energy dissipation systems for bridges could be achieved as the result of two conflicting requirements: no damage under serviceability limit state load condition and maximum dissipation under ultimate limit state load condition. A new concept for cable-stayed bridge tower seismic design that incorporates sacrificial link scheme of low yield point steel horizontal beam is introduced to enable the tower frame structure to remain elastic under large seismic excitation. A nonlinear dynamic analysis for the tower model with the proposed energy dissipation systems is carried out and compared to the response obtained for the tower with its original configuration. The improvement in seismic performance of the tower with supplemental passive energy dissipation system has been measured in terms of the reduction achieved in different response quantities. Obtained results show that the proposed energy dissipation system of low yield point steel seismic link could strongly enhance the seismic performance of the tower structure where the tower and the overall bridge demands are significantly reduced. Low yield point steel seismic link effectively reduces the damage of main structural members under earthquake loading as seismic link yield level decreases due their exceptional behavior as well as its ability to undergo early plastic deformations achieving the concentration of inelastic deformation at tower horizontal beam.

Analysis of Reservoir Vulnerability Based on Geological Structure Around Pohang Earthquake (포항지진 발생 주변지역 지질특성에 따른 저수지 취약성 해석)

  • Lim, Sung Keun;Song, Sung-Ho;Yu, Jaehyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.169-174
    • /
    • 2018
  • A total of 594 reservoirs (17%), which are managed by KRC, equipped with earthquake-resistant facilities whereas remaining ones did not. In addition, reservoirs were placed without the effect of geological structures (i.e., fault and lineament). Therefore, development on technique for alleviating the potential hazards by natural disasters along faults and lineaments has required. In addition, an effective reinforcement guideline related to the geological vulnerabilities around reservoirs has required. The final goal of this study is to suggest the effective maintenance for the safety of earth fill dams. A radius 2 km, based on the center of the reservoir in the study area was set as the range of vulnerability impacts of each reservoir. Seismic design, precise safety diagnosis, seismic influence and geological structure were analyzed for the influence range of each reservoir. To classify the vulnerability of geological disasters according to the fault distribution around the reservoir, evaluation index of seismic performance, precise safety diagnosis, seismic influence and geological structure were also developed for each reservoir, which were a component of the vulnerability assessment of geological disasters. As a result, the reservoir with the highest vulnerability to geological disasters in the pilot district was analyzed as Kidong reservoir with an evaluation index of 0.364. Within the radius of 100km from the epicenter of the Pohang earthquake, the number of agricultural infrastructure facilities subject to urgent inspections were 1,180 including reservoirs, pumping stations and intakes. Four reservoirs were directly damaged by earthquake among 724 agricultural reservoirs. As a result of the precise inspection and electrical resistivity survey of the reservoir after the earthquake, it was reported that cracks on the crest of reservoirs were not a cause of concern. However, we are constantly monitoring the safety of agricultural facilities by Pohang aftershocks.