• Title/Summary/Keyword: earthquake-resistance design

Search Result 171, Processing Time 0.023 seconds

Shake-table responses of a low-rise RC building model having irregularities at first story

  • Lee, Han Seon;Jung, Dong Wook;Lee, Kyung Bo;Kim, Hee Cheul;Lee, Kihak
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.517-539
    • /
    • 2011
  • This paper presents the seismic responses of a 1:5-scale five-story reinforced concrete building model, which represents a residential apartment building that has a high irregularity of weak story, soft story, and torsion simultaneously at the ground story. The model was subjected to a series of uni- and bi-directional earthquake simulation tests. Analysis of the test results leads to the following conclusions: (1) The model survived the table excitations simulating the design earthquake with the PGA of 0.187 g without any significant damages, though it was not designed against earthquakes; (2) The fundamental mode was the torsion mode. The second and third orthogonal translational modes acted independently while the torsion mode showed a strong correlation with the predominant translational mode; (3) After a significant excursion into inelastic behavior, this correlation disappeared and the maximum torsion and torsion deformation remained almost constant regardless of the intensity of the two orthogonal excitations; And, (4) the lateral resistance and stiffness of the critical columns and wall increased or decreased significantly with the large variation of acting axial forces caused by the high bi-directional overturning moments and rocking phenomena under the bi-directional excitations.

Equivalent Linear Stiffness Matrix of Pile Foundation for the Seismic Response Analysis of Bridges (교량의 지진응답해석을 위한 말뚝기초의 등가 선형 강도행렬)

  • 박형기;조양희
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.1-8
    • /
    • 2001
  • Seismic design forces for bridge components may be determined by modifying elastic member forces of design earthquakes using appropriate response modification factors according to the national design code of bridges Modeling technique of pile foundation system is one of the important parameters which greatly affects the results in the process of the elastic seismic analysis of a bridge system with pile foundation. In this paper, a approximate and simplified modeling technique of a pile foundation system for the practical purposes is presented. The modeling technique is based on the stiffnesses of pile foundation during earthquake. The horizontal stiffnesses are determined from the resistance-deflection curves derived from the results of dynamic field tests using cyclic loads and the vertical stiffness includes the effects of the end bearing capacities and side friction of piles as well as the pile compliances under the expected vertical load level. The applicability of the proposed technique has been validated through the some example bridge analyses.

  • PDF

Effect of Constrain Condition of Soil Nail Head on Slope Stability (쏘일 네일 두부 구속조건이 사면 안정성에 미치는 영향)

  • Kim, Yongeung;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.37-43
    • /
    • 2014
  • Natural disasters such as earthquakes and tsunamis occur suddenly, so that they cause massive loss of lives and property. Especially earthquakes represent a particularly severe threat because of the extensive damage accompanied by them. In Korea, an earthquake-resistant design has been rarely applied to a design or construction of slope. However, in resent years, the researches for earthquake-resistance have been performed because the importance on the earthquake-resistance is perceived and highlighted. Soil nail method, one of the slope stability methods, is excellent for its constructability and cost effectiveness, as compared with other stability methods. Also, this method has been widely used for reinforced construction for slope stability. The studies of soil nail method have been performed on the interaction behavior between nails and slopes as well as the varied load condition such as static load, dynamic load and so on. Nevertheless, there has been minimal research regarding the constraint condition of nail head. In this study, the numerical analysis was performed for identifying effect on slope stability for the constrain condition of the soil nail. The result shows that the resistance of constrained the nail head on reinforced slope is larger compared to the one of unconstrained nail head.

Development of Smart Multi-function Ground Resistivity Measuring Device using Arduino in Wind Farm (풍력 발전단지내 아두이노를 활용한 스마트 다기능 대지 고유 저항 측정 장치 개발)

  • Kim, Hong-Yong;Yoon, Dong-Gi;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.65-71
    • /
    • 2019
  • Conventional methods of measuring ground resistance and ground resistance field measurement are used to measure voltage drop according to the resistance value of the site by applying current by installing a constant interval of measurement electrode. If the stratified structure of the site site is unique, errors in boundary conditions will occur in the event of back acid and the analysis of the critical ground resistance in the ground design will show much difference from simulation. This study utilizes the Arduino module and smart ground measurement technology in the convergent information and communication environment to develop a reliable smart land resistance measuring device even if the top layer of land is unique, to analyze the land resistance and accumulate data to predict the change in the age of the land. Considering the topographical characteristics of the site, we propose a ground resistance measuring device and its method of measuring ground resistance so that the auxiliary electrode can be installed by correctly positioning the angle and distance in measuring ground resistance. Not only is ground resistance value obtained through electrodes installed to allow accurate ground resistance values to be selected, but it can also be used as a useful material for installing electrical facilities in similar areas. Moreover, by utilizing reliable data and analyzing the large sections of the site, a precise analysis of the site, which is important in ground design as well as construction cost, is expected to be used much in ground facility design such as potential rise.

The Mechanism of Load Resistance and Deformability of Reinforced Concrete Coupling Beams (철근 콘크리트 연결보의 하중 전달 기구와 변형 능력)

  • Hong, Sung-Gul;Jang, Sang-Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.113-123
    • /
    • 2006
  • An experimental investigation on the behavior of reinforced concrete coupling beams is presented. The test variables are the span-to-depth ratio, the ratio of flexural reinforcements and the ratio of shear rebars. The distribution of arch action and truss action which compose the mechanism of shear resistance is discussed. The increase of plastic deformation after yielding transforms the shear transfer by arch action into by truss action. This study proposes the deformation model for reinforced concrete coupling beams considering the bond slip of flexural reinforcement. The strain distribution model of shear reinforcements and flexural reinforcements based on test results is presented. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. The flexural-shear failure mechanism determines the ultimate state of RC coupling beams. It is expected that this model can be applied to displacement-based design methods.

Improvement on Moment Resistance of a Concealed Timber Post Base Joint

  • Humbert, Jerome;Lee, Sang-Joon;Park, Joo-Saeng;Park, Moon-Jae
    • Journal of the Korea Furniture Society
    • /
    • v.24 no.4
    • /
    • pp.444-451
    • /
    • 2013
  • In this paper, experimental results were presented on the moment resistance of a concealed timber post base joint aimed at replacing in a modern design introduced lately the wood to wood joints used in the traditional Korean timber house - Hanok. Preliminary results showed that the original configuration of the joint offers a limited moment resistance and a low ductility and energy dissipation. In an attempt to mitigate those limitations without undergoing major changes in the connector, three new configurations were proposed and investigated. Motivated by the wish to prevent the early failure in welds, a first approach consists in directly bolting the connector's upper plate to lower the stress on the weak welds. Alternatively, another approach focused on increasing the strength of these welds by extending their length to the full width of the metal wings. Finally, a third configuration investigated the effect of those two approaches combined. In conclusion, reinforcing the welds found out to be the best option among the presented ones. As a result, this connector considered to show proper ability for use in earthquake-resistant structures with suited lateral-resistant structural elements.

  • PDF

Lattice Shear Reinforcement for Earthquake-Resistance of Slab-Column Connection. (슬래브-기둥 접합부의 내진성능을 위한 래티스 전단보강)

  • Kim, You-Ni;Park, Hong-Gun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.26-29
    • /
    • 2006
  • A flat plate-column connection is susceptible to brittle punching shear failure, which may result in the necessity of shear reinforcement. In present study, experimental tests were performed to study the capacity of slab-column connections strengthened with lattice, stud rail, shear band and stirrup under gravity and cyclic lateral load. Among them, the capacity of the specimens with lattice are superior to the others due to the truss action of the lattice bars and dowel action of the longitudinal bars as well as the shear resistance of the web re-bar. On the other hand, the strengths of the specimens with stud rail, shear band and stirrup are lower than the estimated strength by the ACI, therefore design formulas of the ACI are needed to revise.

  • PDF

The Effect of Higher Vibration Modes on the Design Seismic Load (고차진동모드의 영향을 고려한 층지진하중)

  • 이동근;신용우
    • Computational Structural Engineering
    • /
    • v.3 no.4
    • /
    • pp.123-132
    • /
    • 1990
  • In current practice of earthquake resistant design the equivalent lateral force procedure is widely used because of its simplicity and convenience. But the equivalent lateral force procedure is derived based on the assumptions that the dynamic behavior of the structure is governed primarily by the fundamental vibration mode and the effect of higher modes is included in an approximate manner. Therefore the prediction of dynamic responses of structures using the equivalent lateral force procedure is not reliable when the effect of higher vibration modes on the dynamic behavior is significant. In this study, design seismic load which can reflect the effect of higher vibration modes is proposed from the point of view of proper assessment of story shears which have the major influence on the design moment of beams and columns. To evaluate the effect of higher modes, differences between the story force based on the equivalent lateral force procedure specified in current earthquake resistance building code and the one based on modal analysis using design spectrum analysis are examined. From these results an improved design seismic load for the equivalent lateral force procedure which can reflect the effect of higher vibration modes are proposed.

  • PDF

Soil-pile interaction effects in wharf structures under lateral loads

  • Doran, Bilge;Seckin, Aytug
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.267-276
    • /
    • 2014
  • Wharfs are essential to shipping and support very large gravity loads on both a short-term and long-term basis which cause quite large seismic internal forces. Therefore, these structures are vulnerable to seismic activities. As they are supported on vertical and/or batter piles, soil-pile interaction effects under earthquake events have a great importance in seismic resistance which is not yet fully understood. Seismic design codes have become more stringent and suggest the use of new design methods, such as Performance Based Design principles. According to Turkish Code for Coastal and Port Structures (TCCS 2008), the interaction between soil and pile should somehow be considered in the nonlinear analysis in an accurate manner. This study aims to explore the lateral load carrying capacity of recently designed wharf structures considering soil-pile interaction effects for different soil conditions. For this purpose, nonlinear structure analysis according to TCCS (2008) has been performed comparing simplified and detailed modeling results.

Performance assessment of multi-hazard resistance of Smart Outrigger Damper System (스마트 아웃리거 댐퍼시스템의 멀티해저드 저항성능평가)

  • Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.139-145
    • /
    • 2018
  • An outrigger system is used widely to increase the lateral stiffness of high-rise buildings, resulting in reduced dynamic responses to seismic or wind loads. Because the dynamic characteristics of earthquake or wind loads are quite different, a smart vibration control system associated with an outrigger system can be used effectively for both seismic and wind excitation. In this study, an adaptive smart structural control system based on an outrigger damper system was investigated for the response reduction of multi-hazards, including seismic and wind loads. A MR damper was employed to develop the smart outrigger damper system. Three cities in the U.S., L.A., Charleston, and Anchorage, were used to generate multi-hazard earthquake and wind loads. Parametric studies on the MR damper capacity were performed to investigate the optimal design of the smart outrigger damper system. A smart control algorithm was developed using a fuzzy controller optimized by a genetic algorithm. The analytical results showed that an adaptive smart structural control system based on an outrigger damper system can provide good control performance for multi-hazards of earthquake and wind loads.