• Title/Summary/Keyword: earthquake-resistance

Search Result 382, Processing Time 0.028 seconds

Methodology for investigating the behavior of reinforced concrete structures subjected to post earthquake fire

  • Behnam, Behrouz;Ronagh, Hamid R.;Baji, Hassan
    • Advances in concrete construction
    • /
    • v.1 no.1
    • /
    • pp.29-44
    • /
    • 2013
  • Post earthquake fire (PEF) can lead to the collapse of buildings that are partially damaged in a prior ground-motion that occurred immediately before the fire. The majority of standards and codes for the design of structures against earthquake ignore the possibility of PEF and thus buildings designed with those codes could be too weak when subjected to a fire after an earthquake. An investigation based on sequential analysis inspired by FEMA356 is performed here on the Life-Safety performance level of structures designed to the ACI 318-08 code after they are subjected to two different earthquake levels with PGA of 0.35 g and 0.25 g. This is followed by a four-hour fire analysis of the weakened structure, from which the time it takes for the weakened structure to collapse is calculated. As a benchmark, the fire analysis is also performed for undamaged structure and before occurrence of earthquake. The results show that the vulnerability of structures increases dramatically when a previously damaged structure is exposed to PEF. The results also show the damaging effects of post earthquake fire are exacerbated when initiated from second and third floor. Whilst the investigation is for a certain class of structures (regular building, intermediate reinforced structure, 3 stories), the results confirm the need for the incorporation of post earthquake fire in the process of analysis and design and provides some quantitative measures on the level of associated effects.

Seismic Analysis of Firefighting Pipe Networks (소방배관 형상에 따른 배관 내진해석)

  • Choi, Ho-Sung;Lee, Jae-Ou
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.149-154
    • /
    • 2019
  • The stability of firefighting pipes is crucial in the event of an earthquake. In Korea, specification-based designs are used in accordance with NFSC. However, engineering performance-based designs are used for buildings that have special requirements. For firefighting pipes, tree type pipe networks are usually utilized in buildings; however, they are characterized by several limitations. Hence, grid type and loop type networks are being utilized lately. Earthquake-resistant designs for firefighting pipes in Korea utilize NFPA 13 as the cookbook. Nevertheless, an engineering analysis is required to verify its reliability. The NFPA 13 standard used in Korea is a design method for engineers who lack earthquake engineering analysis knowledge of pipes and adapt ASCE and ASME guidelines. Earthquake resistant designs in Korea review braces only. Hence, various analyses under load conditions, such as the internal pressure of a pipe, force exerted by a continuous load, and an earthquake, are required to ensure reliability. An engineering earthquake-resistance analysis showed that tree type pipe networks are less stable than grid and loop type pipe networks. A comparison of earthquake-resistance analysis based on stress and strain revealed that strain analysis exhibited a conservative result value in the range of over-stress. Therefore, for the earthquake-resistance analysis of pipes, it is rational that engineers perform analysis to achieve the required standards through engineering analysis rather than uniform calculations, which should also be analyzed considering various analysis conditions.

Strengthening methods for existing wall type structures by installing additional shear walls

  • Chung, Lan;Park, Tae Won;Hwang, Ji Hyun
    • Structural Engineering and Mechanics
    • /
    • v.49 no.4
    • /
    • pp.523-536
    • /
    • 2014
  • Before incorporating the earthquake-resistance design in design standard (1988) in South Korea, most of existing residential buildings were built without having lateral resistance capacity in addition to their structural peculiarity, such as exterior stair ways, exterior elevator room. For these reasons, the demands on retrofitting research for existing buildings arise recently and many retrofitting methods are proposed. These tasks are important to reduce the enormous economic loss and environmental issues. As the main purpose, this study was intended to examine the performance improvement in terms of ductility and strength in the wake of retrofitting and to suggest retrofitting details.

A Study on Lateral Bearing Capacity of PHC Piles Driven Vertically in Decomposed Granite and Clayey Soil (화강토와 점토지반에 연직으로 타입된 PHC말뚝의 수평지지력에 관한 연구(지반공학))

  • 문영민;이문수;이대재
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.466-470
    • /
    • 2000
  • Recently, the calculation of horizontal bearing capacity of piles foundation has been considered very important for earthquake or wind resistant design in Korea. This study deals with the lateral resistance of PHC pile instead of vertical capacity for earthquake resistant design as well as wind. As case study, the prediction values were compared with measured ones based on ASTM. During this research, Matlock & Reese, Davisson & Gill, Broms and Chang's methods were selected in calculating prediction of lateral resistance of PHC piles. In decomposed granite and clayey soils, The result showed that prediction values proposed by Matlock & Reese(Davisson & Gill), Chang and Broms were smaller values than real values. four proposed methods by Matlock & Reese(Davisson & Gill) and Chang based on lateral deflection and Broms by ultimate lateral resistance turned out valid in view of engineering practice.

  • PDF

Reliability analysis of tunnels with consideration of the earthquakes extreme events

  • Azadi, Mohammad;Ghasemi, S. Hooman;Mohammadi, Mohammadreza
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.433-439
    • /
    • 2020
  • Tunnels are one of the most important constructions in civil engineering. The damage to these structures caused enormous costs. Therefore, the safe and economic design of these structures has long been considered. However, both applied loads on the tunnels as well as the resistance of the structural members are naturally uncertain parameters, hence, the design of these structures requires considering the probabilistic approaches. This study aims to determine the load and resistant factors of lining tunnels concerning the earthquake extreme events limit state function. For this purpose, tunnels that have been designed according to the previous design codes (AASHTO Tunnel LRFD 2017) and using reliability analysis, the optimum reliability of these structures for different loading scenarios is determined. In this paper, the tunnel is considered circular. Finally, the proper load and resistance factors are calculated corresponding to the obtained target reliability. Based on the performed calibration earthquake extreme events limit state function, the result of this study can be recommended to AASHTO Tunnel LRFD 2017.

A Study on Magnitude Scaling Factors and Screening Limits of Liquefaction Potential Assessment in Moderate Earthquake Regions (중진지역에 적합한 액상화 평가 생략기준 및 지진규모 보정계수에 관한 연구)

  • Park Keun-Bo;Park Young-Geun;Choi Jae-Soon;Kim Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.127-140
    • /
    • 2004
  • Conventional methods for the assessment of liquefaction potential were primarily for areas of severe earthquake zones (M=7.5) such as North America and Japan. Detailed earthquake related researches in Korea started in 1997, including development of the seismic design standards for port and harbour structures, which was later completed in 1999. Because most contents in the guidelines were quoted through literature reviews from North America and Japan, which are located in strong earthquake region, those are not proper in Korea, a moderate earthquake region. This requires further improvement of the present guidelines. Considering earthquake hazard data in Korea, use of laboratory tests based on irregular earthquake motion appears to be effective to reflect the dynamic characteristics of soil more realistically than those using simplified regular loading. In this study, cyclic triaxial tests using irregular earthquake motions are performed with different earthquake magnitudes, relative densities, and fines contents. Assessment of liquefaction potential in moderate earthquake regions is discussed based on various laboratory test results. Effects of these components on dynamic behavior of soils are discussed as well. From the test results, screening limits and magnitude scaling factors to determine the soil liquefaction resistance strength in seismic design were re-investigated and proposed using normalized maximum stress ratios under real irregular earthquake motions.

Seismic Performance of the Framed Apartment Building Structure with Damping System (감쇠시스템을 적용한 라멘조 아파트의 내진성능평가)

  • Chun, Young-Soo;Lee, Bum-Sik;Park, Ji-Young
    • Land and Housing Review
    • /
    • v.8 no.3
    • /
    • pp.181-187
    • /
    • 2017
  • To proactively respond to internal and external changes such as the recent demographic change and rising demand for diversified housing types, this study investigated the framed-structure free plan public house model proposed by the LH to look at the seismic performance of framed-structure apartment according to damper system use through non-linear analysis. The effectiveness thereof was also examined in terms of performance and economy. As a result, the proposed damper system application method to framed-structure free plan public house model was found to meet the performance requirements of the present earthquake-resistant design (KBC2016) and effective to apply to designs. The max response displacement and max response acceleration were compared based on the nonlinear analysis. As a result, the building with damper system showed better earthquake resistance performance than earthquake-resistant structure thanks to the damper system, although the base shear of earthquake-resistant system was reduced by 20% in design. The damper system is expected to help reduce building damage while ensuring excellent earthquake resistance performance. In addition, the framework quantities of earthquake-resistant structure and structure with damping system were compared. As a result, columns were found to reduce concrete amount by about 3.9% and rebar, by about 7.3%. Walls showed about 12.6% reduction in concrete and about 10.7% in rebar. In terms of cost, framework construction cost including formwork and foundation expenses was expected to drop by about 5~6%.

A Fundamental Study on Vibrated Crushed-stone Pile for the Improvement of Liquefaction Resistance (액상화 방지를 위한 진동쇄석말뚝에 관한 기초적 연구)

  • 천병식
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.105-111
    • /
    • 2000
  • If a saturate sand is subjected to ground vibrations it tends to compact and decrease in volume. if drainage is unable to occur the tendency to decrease in volume results in an increase in pore water pressure and if the pore water pressure build up to the point at which it is equal to the overburden pressure the effective stress becomes zero the sand loses its strength completely. This phenomenon is called "Liquefaction" It is associated primarily but not exclusively with saturated cohesion soils. The attention and study on liquefaction have been growing since the earthquake in Niigita Japan in 1964. Many researchers on liquefaction effect have been carried out in many countries under the potential influence of earthquake including Japan. However little research on liquefaction has been reported in Korea because Korea has been considered to be safe from earthquake. The term "liquefaction" is only known among geotechnical engineers,. In this paper overview of liquefaction and the evaluation on the applicability of vibrated crushed-stone pile as a liquefaction prevention method are presented.ethod are presented.

  • PDF

Numerical Study on Earthquake Performance of Gravity Dam Considering Earthquake Frequencies (지진진동수에 따른 콘크리트 중력댐의 내진성능에 대한 해석적 사례연구)

  • Chai, Young-Suk;Min, In-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.64-74
    • /
    • 2016
  • Recently, the seismic stability evaluation of concrete gravity dams is raised due to the failure of dams occurred by the Izmit, Turkey and JiJi, Taiwan earthquake in 1999. Dams failure may incur loss of life and properties around the dam as well as damage to dam structure itself. Recently, there has been growing much concerns about "earthquake - resistance" or "seismic safety" of existing concrete gravity dams designed before current seismic design provisions were implemented. This research develops three evaluation levels for seismic stability of concrete gravity dams on the basis of the evaluation method of seismic stability of concrete gravity dams in U.S.A., Japan, Canada, and etc. Level 1 is a preliminary evaluation which is for purpose of screening. Level 2 is a pseudo-static evaluation on the basis of the seismic intensity method. And level 3 is a detail evaluation by the dynamic analysis. Evaluation results on existing concrete gravity dams on operation showed good seismic performance under designed artificial earthquake(KHC earthquake).

In-structure Response Evaluation of Shear Wall Structure via Shaking Table Tests (진동대 실험을 통한 전단벽 구조물의 층응답 특성 평가)

  • Jung, Jae-Wook;Ha, Jeong-Gon;Hahm, Daegi;Kim, Min Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.129-135
    • /
    • 2021
  • After the manual shutdown of the Wolseong nuclear power plant due to an earthquake in Gyeongju in 2016, anxiety about the earthquake safety of nuclear power plants has become a major social issue. The shear wall structure used as a major structural element in nuclear power plants is widely used as a major structural member because of its high resistance to horizontal loads such as earthquakes. However, due to the complexity of the structure, it is challenging to predict the dynamic characteristics of the structure. In this study, a three-story shear wall structure is fabricated, and the in-structure response characteristics of the shear wall structure are evaluated through shaking table tests. The test is performed using the Gyeongju earthquake that occurred in 2016, and the response characteristics due to the domestic earthquake are evaluated.