• Title/Summary/Keyword: earthquake-resistance

Search Result 385, Processing Time 0.027 seconds

Extending the OPRCB Seismic isolation system's governing equations of motion to 3D state and its application in multi-story buildings

  • M. Hosseini;S. Azhari;R. Shafie Panah
    • Earthquakes and Structures
    • /
    • v.24 no.3
    • /
    • pp.217-235
    • /
    • 2023
  • Orthogonal pairs of rollers on concave beds (OPRCB) are a low-cost, low-tech rolling-based isolating system, whose high efficiency has been shown in a previous study. However, seismic performance of OPRCB isolators has only been studied in the two-dimensional (2D) state so far. This is while their performance in the three-dimensional (3D) state differs from that of the 2D state, mainly since the vertical accelerations due to rollers' motion in their beds, simultaneously in two orthogonal horizontal directions, are added up and resulting in bigger vertical inertia forces and higher rolling resistance. In this study, first, Lagrange equations were used to derive the governing equations of motion of the OPRCB-isolated buildings in 3D. Then, some regular shear-type OPRCB-isolated buildings were considered subjected to three-component excitations of far- and near-source earthquakes, and their responses were compared to those of their fixed-base counterparts. Finally, the effects of more realistic modeling and analysis were examined by comparing the responses of isolated buildings in 2D and 3D states. Response histories were obtained by the fourth-order Runge-Kutta-Nystrom method, considering the geometrical nonlinearity of isolators. Results reveal that utilizing the OPRCB isolators effectively reduces the acceleration response, however, depending on the system specifications and earthquake characteristics, the maximum responses of isolated buildings in the 3D state can be up to 40% higher than those in the 2D state.

Study on Seismic Performance Evaluation of Existing Apartment with Wall Type (벽식 노후 공동주택의 내진성능평가에 관한 연구)

  • Jeong Chul-Hwa;Chung Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.52-55
    • /
    • 2004
  • Before incorporating the earthquake-resistance design in design code(998), most of existing residential buildings were built without having lateral resistance capacity in addition to their structural peculiarity such as exterior stair ways, exterior elevator room. For these reasons, the retrofitting research demands for existing buildings arise recently and many retrofitting methods are proposed. These tasks are important to reduce the enormous economic loss and environmental issues. In this study, Scaled residential buildings with/without lateral resistance were tested and monitored with external lateral load especially toward the longer side of the building. From these experiments, enhanced retrofitting methods of old shear wall system are proposed and also compared with structural analysis.

  • PDF

Structural robustness of RC frame buildings under threat-independent damage scenarios

  • Ventura, Antonio;De Biagi, Valerio;Chiaia, Bernardino
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.689-698
    • /
    • 2018
  • This study focuses on a novel procedure for the robustness assessment of reinforced concrete (RC) framed structures under threat-independent damage scenarios. The procedure is derived from coupled dynamic and non-linear static analyses. Two robustness indicators are defined and the method is applied to two RC frame buildings. The first building was designed for gravity load and earthquake resistance in accordance with Eurocode 8. The second was designed according to the tie force (TF) method, one of the design quantitative procedures for enhancing resistance to progressive collapse. In addition, in order to demonstrate the suitability and applicability of the TF method, the structural robustness and resistance to progressive collapse of the two designs is compared.

The Response of Buried Flexible pipe due to Surcharge Load and Uplifting Force. (상재하중 및 인발하중으로 인한 식중매설연성관의 거동 특성)

  • 권호진;정인준
    • Geotechnical Engineering
    • /
    • v.3 no.3
    • /
    • pp.31-48
    • /
    • 1987
  • The vertical pressure due to soil prism load and surface surcharge load acts on buried pipe, and occasionally uplifting force due to earthquake or differential settlement acts on it. In this paper, study was performed to estimate the pressure acting on the buried pipe due to soil prism load through analyzing Marston-Spangler theory by new method. And loading tests on the buried flexible pipe were performed to study on the response of the pipe due to surface surcharge load. Also, through the estimation of uplifting resistance theory and uplifting test for buried pipe, the method to determine the maximum uplifting resistance of buried pipe was proposed.

  • PDF

Seismic response characteristics of the hypothetical subsea tunnel in the fault zone with various material properties (다양한 물성의 단층대를 통과하는 가상해저터널의 지진 시 응답 특성)

  • Jang, Dong In;Kwak, Chang-Won;Park, Inn-Joon;Kim, Chang-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1061-1071
    • /
    • 2018
  • A subsea tunnel, being a super-sized underground structure must ensure safety at the time of earthquake, as well as at ordinary times. At the time of earthquake, in particular, of a subsea tunnel, a variety of response behaviors are induced owing to relative rigidity to the surrounding ground, or difference of displacement, so that the behavior characteristics can be hardly anticipated. The investigation aims to understand the behavior characteristics switched by earthquake of an imaginary subsea tunnel which passes through a fault zone having different physical properties from those of the surrounding ground. In order to achieve the aim, dynamic response behaviors of a subsea tunnel which passes through a fault zone were observed by means of indoor experiments. For the sake of improved earthquake resistance, a shape of subsea tunnel to which flexible segments have been applied was considered. Afterward, it is believed that a D/B can be established through 3-dimensional earthquake resistance interpretation of various grounds, on the basis of verified results from the experiments and interpretations under various conditions. The present investigation performed 1 g shaking table test in order to verify the result of 3-dimensional earthquake resistance interpretation. A model considering the similitude (1:100) of a scale-down model test was manufactured, and tests for three (3) Cases were carried out. Incident seismic wave was introduced by artificial seismic wave having both long-period and short-period earthquake properties in the horizontal direction which is rectangular to the processing direction of the tunnel, so that a fault zone was modeled. For numerical analysis, elastic modulus of the fault zone was assumed 1/5 value of the modulus of individual grounds surround the tunnel, in order to simulate a fault zone. Resultantly, reduced acceleration was confirmed with increase of physical properties of the fault zone, and the result from the shaking table test showed the same tendency as the result from 3-dimensional interpretation.

Development of Curve Fitted Equations for Dynamic Behavior of Various Buried Pipelines (각종 매설관의 동적거동에 대한 곡선적합식의 개발)

  • Kim, Sung-Ban;Jeong, Jin-Ho;Joeng, Du-Hwoe;Lee, Kwang-Yeol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.25-33
    • /
    • 2006
  • The purpose of this study is to develop the curve fitted equations for practicality and actual calculation during seismic performance evaluation of buried pipelines. Curve fitting for strain curve according to the wavelength of the seismic wave was produced using the non-linear least square method and the equations with the best results was suggested. In addition, a degree and coefficient of polynomial fitting equation needed to use curve fitted equation were identified. Interpreting process during the test of resistance of earthquake of buried pipelines with various end boundary conditions were provided through example questions. The results of this study were used to conduct a dynamic response analysis and a seismic performance evaluation of concrete, steel, and FRP pipes with various end boundary conditions.

Shake-table responses of a low-rise RC building model having irregularities at first story

  • Lee, Han Seon;Jung, Dong Wook;Lee, Kyung Bo;Kim, Hee Cheul;Lee, Kihak
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.517-539
    • /
    • 2011
  • This paper presents the seismic responses of a 1:5-scale five-story reinforced concrete building model, which represents a residential apartment building that has a high irregularity of weak story, soft story, and torsion simultaneously at the ground story. The model was subjected to a series of uni- and bi-directional earthquake simulation tests. Analysis of the test results leads to the following conclusions: (1) The model survived the table excitations simulating the design earthquake with the PGA of 0.187 g without any significant damages, though it was not designed against earthquakes; (2) The fundamental mode was the torsion mode. The second and third orthogonal translational modes acted independently while the torsion mode showed a strong correlation with the predominant translational mode; (3) After a significant excursion into inelastic behavior, this correlation disappeared and the maximum torsion and torsion deformation remained almost constant regardless of the intensity of the two orthogonal excitations; And, (4) the lateral resistance and stiffness of the critical columns and wall increased or decreased significantly with the large variation of acting axial forces caused by the high bi-directional overturning moments and rocking phenomena under the bi-directional excitations.

Strengthening of hollow brick infill walls with perforated steel plates

  • Aykac, Sabahattin;Kalkan, Ilker;Seydanlioglu, Mahmut
    • Earthquakes and Structures
    • /
    • v.6 no.2
    • /
    • pp.181-199
    • /
    • 2014
  • The infill walls, whose contribution to the earthquake resistance of a structure is generally ignored due to their limited lateral rigidities, constitute a part of the lateral load bearing system of an RC frame structure. A common method for improving the earthquake behavior of RC frame structures is increasing the contribution of the infill walls to the overall lateral rigidity by strengthening them through different techniques. The present study investigates the influence of externally bonded perforated steel plates on the load capacities, rigidities, and ductilities of hollow brick infill walls. For this purpose, a reference (unstrengthened) and twelve strengthened specimens were subjected to monotonic diagonal compression. The experiments indicated that the spacing of the bolts, connecting the plates to the wall, have a more profound effect on the behavior of a brick wall compared to the thickness of the strengthening plates. Furthermore, an increase in the plate thickness was shown to result in a considerable improvement in the behavior of the wall only if the plates are connected to the wall with closely-spaced bolts. This strengthening technique was found to increase the energy absorption capacities of the walls between 4 and 14 times the capacity of the reference wall. The strengthened walls reached ultimate loads 30-160% greater than the reference wall and all strengthened walls remained intact till the end of the test.

A Study on the Seismic Retrofit of Column in Educational Facilities Using Composite Material (복합소재를 이용한 교육시설의 기둥 내진보강공법에 관한 연구)

  • Park, Choon-Wook;Lee, Hung-Joo;Joo, Chi-Hong;Hong, Won-Hwa
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.20 no.1
    • /
    • pp.45-52
    • /
    • 2013
  • In paper after the strong earthquake of recently the Korea neighborhood, the Korean government survey show that the 86% of school buildings in Korea are in potential damage risk and only 14% of them are designed as earthquake-resistance buildings. Reinforcing projects of school have been conducting by the ministry of education, however their reinforcing methods done by not proved a engineering by experiment which results in uneconomical and uneffective rehabilitation for the future earthquake. An experimental and analytical study have been conducted for the shear and flexural reinforcing method of RC beam using composite beam. Based on the previous research, in this study, performance evaluation for the column reinforcing of old school buildings using nonlinear analysis is going to be conducted and strengthening method is going to be on the market after their performance is proved by the test.

Vertical distributions of lateral forces on base isolated structures considering higher mode effects

  • Tsai, C.S.;Chen, Wen-Shin;Chen, Bo-Jen;Pong, Wen-Shen
    • Structural Engineering and Mechanics
    • /
    • v.23 no.5
    • /
    • pp.543-562
    • /
    • 2006
  • Base isolation technology has been accepted as a feasible and attractive way in improving seismic resistance of structures. The seismic design of new seismically isolated structures is mainly governed by the Uniform Building Code (UBC-97) published by the International Conference of Building Officials. In the UBC code, the distribution formula of the inertial (or lateral) forces leads to an inverted triangular shape in the vertical direction. It has been found to be too conservative for most isolated structures through experimental, computational and real earthquake examinations. In this paper, four simple and reasonable design formulae, based on the first mode of the base-isolated structures, for the lateral force distribution on isolated structures have been validated by a multiple-bay three-story base-isolated steel structure tested on the shaking table. Moreover, to obtain more accurate results for base-isolated structures in which higher mode contributions are more likely expected during earthquakes, another four inertial force distribution formulae are also proposed to include higher mode effects. Besides the experimental verification through shaking table tests, the vertical distributions of peak accelerations computed by the proposed design formulae are in good agreement with the recorded floor accelerations of the USC University Hospital during the Northridge earthquake.