• 제목/요약/키워드: earthquake-induced landslide

검색결과 13건 처리시간 0.015초

Response of segmented pipelines subject to earthquake effects

  • Yigit, Adil
    • Geomechanics and Engineering
    • /
    • 제30권4호
    • /
    • pp.353-362
    • /
    • 2022
  • The seismic failure-prone region in Istanbul has been examined in terms of the segmented pipelines. Although some researchers have suggested that this territory should be left as a green land, many people continue to live in this area. This region is about 9-10 km away from the North Anatolian Fault Line. This fault zone is an active right-lateral strike-slip fault line in Turkey and an earthquake with a magnitude of 7.0-7.5 is expected in the Marmara Sea. Therefore, superstructures and infrastructures are under both land sliding risks and seismic risks in this area. Because there are not any pipeline-fault line intersection points in the region, in this study, it has been focused on the behaviors of the segmented (sewage or stormwater) pipelines subject to earthquake-induced permanent ground deformation and seismic wave propagation. Based on the elastic beam theory some necessary analyses have been carried out and obtained results of this approximation have been examined.

Beam models for continuous pipelines passing through liquefiable regions

  • Adil Yigit
    • Geomechanics and Engineering
    • /
    • 제37권2호
    • /
    • pp.189-195
    • /
    • 2024
  • Buried pipelines can be classified as continuous and segmented pipelines. These infrastructures can be damaged either by ground movement or by seismic wave propagation during an earthquake. Permanent ground deformations (PGD) include surface faulting, liquefaction-induced lateral spreading and landslide. Liquefaction is a major problem for both superstructures and infrastructures. Buyukcekmece lake zone, which is the studied region in this paper, is a liquefaction prone area located near the North Anatolian Fault Line. It is an active fault line in Turkey and a major earthquake with a magnitude of around 7.5 is expected in this investigated region in Istanbul. It is planned to be constructed a new 12" steel natural gas pipeline from one side of the lake to the other side. In this study, this case has been examined in terms of two different support conditions. Firstly, it has been defined as a beam in liquefied soil and has built-in supports at both ends. In the other approach, this case has been modeled as a beam in liquefied soil and has vertical elastic pinned supports at both ends. These models have been examined and some solution proposals have been produced according to the obtained results. In this study, based on this sample, it is aimed to determine the behaviors of buried continuous pipelines subject to liquefaction effects in terms of buoyancy.

지구물리탐사를 이용한 산사태지역의 지하수위에 따른 안정성 해석 (Analysis on the Influence of Groundwater Level Changes on Slope Stability using a Seismic Refraction Survey in a Landslide Area)

  • 이경미;김현;이재혁;서용석;김지수
    • 지질공학
    • /
    • 제17권4호
    • /
    • pp.545-554
    • /
    • 2007
  • 자연사면 산사태는 주요 유발인자인 강우나 지진 이외에 토질특성, 지형 및 지질요소 등 다양한 인자의 영향으로 발생될 수 있다. 본 연구지역의 경우 파괴의 시점에 인공구조물이 시공되어 있어 이들과 사면붕괴와의 관련성을 밝히는 것은 매우 의미가 있다. 이를 위해 원지반의 물성을 추정하여 자연사면 자체의 붕괴에 대한 취약성을 파악하고 구조물에 의해 변화된 지반에 대한 불안정성을 비교하여 붕괴원인을 살펴보았다. 현장조사와 실내시험으로 원지반과 성토지반의 물성을 구하였고, 지구물리탐사를 통해 추정된 파괴면의 심도를 이용하여 지하수위 변화에 따른 2차원과 3차원 한계평형해석을 각각 수행하였다. 해석결과는 지반의 토질특성과 강도정수에 상관없이 비슷한 안전율을 보였고, 지하수위는 만수위시 불안정해지는 것으로 나타났다.