Browse > Article
http://dx.doi.org/10.12989/gae.2022.30.4.353

Response of segmented pipelines subject to earthquake effects  

Yigit, Adil (Istanbul Natural Gas Distribution Company (IGDAS), IGDAS Kavacik Hizmet Binasi)
Publication Information
Geomechanics and Engineering / v.30, no.4, 2022 , pp. 353-362 More about this Journal
Abstract
The seismic failure-prone region in Istanbul has been examined in terms of the segmented pipelines. Although some researchers have suggested that this territory should be left as a green land, many people continue to live in this area. This region is about 9-10 km away from the North Anatolian Fault Line. This fault zone is an active right-lateral strike-slip fault line in Turkey and an earthquake with a magnitude of 7.0-7.5 is expected in the Marmara Sea. Therefore, superstructures and infrastructures are under both land sliding risks and seismic risks in this area. Because there are not any pipeline-fault line intersection points in the region, in this study, it has been focused on the behaviors of the segmented (sewage or stormwater) pipelines subject to earthquake-induced permanent ground deformation and seismic wave propagation. Based on the elastic beam theory some necessary analyses have been carried out and obtained results of this approximation have been examined.
Keywords
earthquake; landslide; segmented pipeline; seismic wave propagation; underground construction;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Xie, J., Zhang, L., Zheng, Q., Liu, X., Dubljevic, S. and Zhang, H. (2021), "Strain demand prediction of buried steel pipeline at strike-slip fault crossings: A surrogate model approach", Earthq. Struct., 20(1), 109-122. http://doi.org/10.12989/eas.2021.20.1.109.   DOI
2 Yigit, A. (2020), "Prediction of amount of earthquake-induced slope displacement by using newmark method", Eng. Geology, 264, 105385. https://doi.org/10.1016/j.enggeo.2019.105385.   DOI
3 Yigit, A. (2021), "Newmark yontemine gore zemin deplasmaninin tahmin edilmesi", Politeknik Dergisi, 1-1. http://doi.org/10.2339/politeknik.665258.   DOI
4 Banushi, G. and Wham, B.P. (2021), "Deformation capacity of buried hybrid-segmented pipelines under longitudinal permanent ground deformation", Can. Geotech. J., 58(8), 1095-1117. https://doi.org/10.1139/cgj-2020-0049.   DOI
5 Liu, L., Yang, C. and Wang, X. (2021), "Landslide susceptibility assessment using feature selection-based machine learning models", Geomech. Eng., 25(1), 1-16. http://doi.org/10.12989/gae.2021.25.1.001.   DOI
6 Jibson, R.W. (1993), "Predicting earthquake-induced landslide displacements using Newmark's sliding block analysis", Transp. Res. Record, 1411, 9-17.
7 El Hmadi, K. and O'Rourke, M.J. (1990), "Seismic damage to segmented buried pipelines", Earthq. Eng. Struct. Dyn., 19(4), 529-539. https://doi.org/10.1002/eqe.4290190405.   DOI
8 Gregor, N.J. (1995), "The attenuation of strong ground motion displacements", Earthquake Engineering Research Center, Report Number UCB/EERC-95/02, University of California at Berkeley, June.
9 Mina, D., Forcellini, D. and Karampour, H. (2020), "Analytical fragility curves for assessment of the seismic vulnerability of hp/ht unburiedsubsea pipelines", Soil Dyn. Earthq. Eng., 137, 106308. https://doi.org/10.1016/j.soildyn.2020.106308.   DOI
10 Yigit, A. (2015), "Buried continuous pipelines under the effects of earthquake", PhD Thesis, Istanbul Technical University, September, Istanbul, Turkey.
11 Nanahkaran, Y.A., Mao, Y., Azarafza, M., Kockar, M.K. and Zhu, H. (2021), "Fuzzy-based multiple decision method for landslide susceptibility and hazard assessment: A case study of Tabriz, Iran", Geomech. Eng., 24(5), 407-418. http://doi.org/10.12989/gae.2021.24.5.407.   DOI
12 Newmark, N.M. (1965), "Effects of earthquakes on dams and embankments", Geotechnique, 15, 139-159. http://doi.org/10.12989/gae.2021.24.5.407.   DOI
13 O'Rourke, M. (1989), "Approximate analysis procedure for permanent ground deformation effect on buried pipelines", Proceedings of 2nd Japan-U.S. Workshop on Liquefaction, Large Ground Deformation and Their Effects on Lifeline Facilities, Buffalo, New York.
14 O'Rourke, M. and Londono, T.V. (2016), "Analytical model for segmented pipe response to tensile ground strain", Earthq. Spectra, 32(4), 2533. http://doi.org/10.1193/050415EQS064M.   DOI
15 Shi, P. (2015b), "Seismic wave propagation effects on buried segmented pipelines", Soil Dyn. Earthq. Eng., 72, 89-98. https://doi.org/10.1016/j.soildyn.2015.02.006.   DOI
16 O'Rourke, M.J. and Liu, X. (1999), "Response of buried pipelines subject to earthquake effects", Monograph No. 3, Multidisciplinary Center for Earthquake Research, University of Buffalo, Buffalo.
17 O'Rourke, T.D., Grigoriu, M.D. and Khater, M.M. (1985), "A state of the art review: seismic response of buried pipelines", Ed. C. Sundararajan, Decade of Progress in Pressure Vessel Technology, ASME.
18 Shi, P. (2015a), "Surface wave propagation effects on buried segmented pipelines", J. Rock Mech. Geotech. Eng., 7(4), 440-451. https://doi.org/10.1016/j.jrmge.2015.02.011.   DOI
19 Siyahi B., Erdik M., Sesetyan K., Demircioglu M.B. and Akman H. (2003), "Sivilasma ve sev stabilitesi hassasligi ve potansiyeli haritalari:istanbul ornegi", Besinci Ulusal Deprem Muhendisligi Konferansi, Istanbul, Turkiye. (in Turkish)
20 Toprak, S., Nacaroglu, E. and Koc, C.A. (2015), "Seismic damage probabilities for segmented buried pipelines in liquefied soils", 6th International Conference on Earthquake Geotechnical Engineering, Christchurch, New Zealand.November.
21 Toprak, S., Nacaroglu, E., Ballegooy, S.V., Koc, C.A., Jacka, M., Manav, Y., Torvelainen, E. and O'Rourke, T.D. (2019), "Segmented pipeline damage predictions using liquefaction vulnerability parameters", Soil Dyn. Earthq. Eng., 125, 105758. https://doi.org/10.1016/j.soildyn.2019.105758.   DOI
22 Vazouras, P., Karamanos, S.A. and Dakoulas, P. (2010), "Finite element analysis of buried steel pipelines under strike-slip fault displacements", Soil Dyn. Earthq. Eng., 30, 1361-1376. https://doi.org/10.1016/j.soildyn.2010.06.011   DOI
23 Triantafyllaki, A., Papanastasiou, P. and Loukidis, D. (2020), "Numerical analysis of the structural response of unburied offshore pipelines crossing active normal and reverse faults", Soil Dyn. Earthq. Eng., 137, 106296. https://doi.org/10.1016/j.soildyn.2020.106296.   DOI
24 Turkdogan, F.I. and Yetilmezsoy, K. (2004), "Su getirme ve kanalizasyon uygulamalari", Su Vakfi Yayinlari, Istanbul, Turkiye. (in Turkish)
25 Vazouras, P., Dakoulas, P. and Karamanos, S.A. (2015), "Pipe-soil interaction and pipeline performance under strike-slip fault movements", Soil Dyn. Earthq. Eng., 72, 48-65. https://doi.org/10.1016/j.soildyn.2015.01.014.   DOI
26 Vazouras, P., Karamanos, S.A. and Dakoulas, P. (2012), "Mechanical behavior of buried steel pipes crossing active strike-slip faults", Soil Dyn. Earthq. Eng., 41, 164-180. https://doi.org/10.1016/j.soildyn.2012.05.012.   DOI
27 American Society of Civil Engineers (ASCE) (1984), "Guidelines for the seismic design of oil and gas pipeline systems", Committee on Gas and Liquid Fuel Lifeline, ASCE.
28 Apak, M.Y., Ozen, H., Calic, M., Golgeli, B. and Ataoglu, S. (2022), "Applications of utility tunnels for natural gas pipelines", Tunnel. Underg. Space Technol., 122, 104243. https://doi.org/10.1016/j.tust.2021.104243.   DOI
29 Bouabid, J. (1995), "Behavior of rubber gasketed concrete pipe joints during earthquakes", Ph.D. Thesis, Rensselaer Polytechnic Institute, December.
30 Castiglia, M., Magistris, F.S. and Napolitano, A. (2018), "Stability of onshore pipelines in liquefied soils: Overview of computational methods", Geomech. Eng., 14(4), 355-366. http://doi.org/10.12989/gae.2018.14.4.355.   DOI
31 Forcellini, D., Mina, D. and Karampour, H. (2022), "The role of soilstructure interaction in the fragilityassessment of HP/HT unburiedsubsea pipelines", J. Marine Sci. Eng., 10(1), 110. https://doi.org/10.3390/jmse10010110.   DOI
32 Gedikli, A., Lav, M.A. and Yigit, A. (2008), "Seismic vulnerability of a natural gas pipeline network", ASCE Pipelines 2008, Atlanta, July.
33 Hsieh, S. and Lee, C.T. (2011), "Empirical estimation of the Newmark displacement from the Arias intensity and critical acceleration", Eng. Geology, 122, 34-42. https://doi.org/10.1016/j.enggeo.2010.12.006.   DOI
34 Indian Institute of Technology Kanpur (2007), IITK-GSDMA Guidelines for Seismic Design of Buried Pipelines, November.
35 Jibson, R.W. (2007), "Regression models for estimating coseismic landslide displacement", Eng. Geology, 91, 209-218. https://doi.org/10.1016/j.enggeo.2007.01.013.   DOI
36 Jibson, R.W., Harp, E.L. and Michael, J.M. (1998), "A method for producing digital probabilistic seismic landslide hazard maps: An example from the Los Angeles, California area", US Geological Survey Open-File Report 98-113.
37 Londono, T.V. and O'Rouerke, M. (2018), "Influence of diameter on seismic response of buried segmented pipelines", Soil Dyn. Earthq. Eng., 107, 332-338. https://doi.org/10.1016/j.soildyn.2018.01.034.   DOI
38 Merka Insaat Taahhut Muhendislik Ticaret A.S. (2006), "Gurpinar-beylikduzu ve yakuplu beldeleri jeolojik ve jeofizik esasli etud raporu", Nisan, Istanbul, Turkiye. (in Turkish)
39 Wang, L.R.L. (1979), "Some aspects of seismic resistant design of buried pipelines", Lifeline Earthquake Engineering-Buried Pipelines, Seismic Risk, and Instrumentation, PVP-34, ASME.
40 Alexoudi, M., Terzi, V. and Chatzigogos, T. (2007), "Numerical assessment of damage state of segmented pipelines due to permanent ground deformation", Proceeding of 10th International Conference on Applications of Statistics and Probability in Civil Engineering, Tokyo, Japan, July.
41 Wang, T., Zhou, G., Wang, J. and Wang, D. (2020), "Impact of spatial variability of geotechnical properties on uncertain settlement of frozen soil foundation around an oil pipeline", Geomech. Eng., 20(1), 19-28. http://doi.org/10.12989/gae.2020.20.1.019.   DOI
42 Wham, B.P., Franke, K.W., Dashti, S. and Kayen, R.E. (2017), "Water supply damage caused by the 2016 Kumamoto Earthquake", Lowland Technol. Int., 19(3), 151-160.
43 Yigit, A., Lav, M.A. and Gedikli, A. (2018), "Vulnerability of natural gas pipelines under earthquake effects", J. Pipeline Syst. Eng. Pract., 9(1), 04017036. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000295.   DOI
44 Yoon, S., Lee, Y. and Jung, H. (2020), "A comprehensive approach to flow-based seismic risk analysis of water transmission network", Struct. Eng. Mech., 73(3), 339-351. http://doi.org/10.12989/sem.2020.73.3.339.   DOI
45 Yun, H. and Kyriakides, S. (1990), "On the beam and shell modes of buckling of buried pipelines", Soil Dyn. Earthq. Eng., 9, 179-193. https://doi.org/10.1016/S0267-7261(05)80009-0.   DOI
46 Zhang, D., Bie, X., M., Zeng, X., Lei, Z. and Du, G.F. (2020), "Experimental and numerical studies on mechanical behavior of buried pipelines crossing faults", Struct. Eng. Mech., 75(1), 71-86. http://doi.org/10.12989/sem.2020.75.1.071.   DOI
47 Wilson, R.C. and Keefer, D.K. (1983), "Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake, California, earthquake", Bull. Seismol. Soc. Am., 73(3), 863-877. https://doi.org/10.1785/BSSA0730030863.   DOI
48 Wham, B.P. and Davis, A.C. (2019), "Buried continuous and segmented pipelines subjected to longitudinal permanent ground deformation", J. Pipeline Syst. Eng. Pract., 10(4), 04019036. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000400.   DOI
49 Wijaya, H., Rajaev, P. and Gad, E. (2019), "Effect of seismic and soil parameter uncertainties on seismic damage of buried segmented pipeline", Transp. Geotech., 21, 100274. https://doi.org/10.1016/j.trgeo.2019.100274.   DOI
50 O'Rourke, M. and Bouabid, J. (1996), "Analytical damage estimates for concrete pipelines", Proceedings of Eleventh World Conference on Earthquake Engineering, Acapulco, Mexico, June.