• 제목/요약/키워드: earthquake source

검색결과 223건 처리시간 0.018초

영월 및 경주지진 파형의 주파수 분석 (Characteristics of Spectrum using Observed Ground Motions from the Yongwol and the KyoungJu Earthquakes)

  • 김준경
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.407-412
    • /
    • 1998
  • Amplification factor spectrum, using the observed strong ground motions database, has been obtained and compared with Standard Response Spectrum, which were suggested by US NRC. The observed ground motions from the Yongwol and the Kyoungju Earthquake, respectively, which are suppose to represent domestic seismotectonic characteristics such as seismic source, attenuation, and site effect, are used for the analysis of amplification factor spectrum. Amplification factors have been calculated by comparing the observed peak ground motions with results from responses to the observed horizontal and vertical ground motions. The comparison shows that the amplification factors resultant from this study exceeds those of Standard Response Spectum at relatively higher frequencies. The results suggest that the characteristics of the seismic strong ground motion, which are supposed to represent the domestic seismotectonic characteristics, differs from those of Standard Response Spectrum, especially at hither frequencies

  • PDF

The structural detailing effect on seismic behavior of steel moment resisting connections

  • Farrokhi, Hooman;Danesh, F. Ahmadi;Eshghi, Sassan
    • Structural Engineering and Mechanics
    • /
    • 제35권5호
    • /
    • pp.617-630
    • /
    • 2010
  • Different types of moment resisting connections are commonly used to transfer the induced seismic moments between frame elements in an earthquake resisting structure. The local connection behavior may drastically affect the global seismic response of the structure. In this study, the finite element and experimental seismic investigations are implemented on two frequently used connection type to evaluate the local behavior and to reveal the failure modes. An alternative connection type is then proposed to eliminate the unfavorable brittle fracture modes resulted from probable poor welding quality. This will develop a reliable predefined ductile plastic mechanism forming away from the critical locations. Employing this technique, the structural reliability of the moment resisting connections shall be improved by achieving a controllable energy dissipation source in form of yielding of the cover plates.

1994년 7월 25일 발생한 황해남부 지진의 지진원 요수 (Source Parameters of the Southern Yellow Sea Earthquake Occurred on July 25, 1994)

  • 김성균;김민선
    • 한국지진공학회논문집
    • /
    • 제2권1호
    • /
    • pp.113-118
    • /
    • 1998
  • 1994년 7월 25일 발생한 황해남부 지진(Mb=5.5)의 지진원 요소들을 결정하였다. 지진원 요소들을 결정하기 위하여 이 지진에 대하여 이전의 연구에서 얻어진 지진발생기구를 사용하였다. 지진발생기구에 의하면, 이 지진은 거의 동서방향의 압축응력장에 주향이동성분이 가미되어 발생한 것을 암시한다. 지진원 요소들은 단주기 및 장주기 P파에 대한 원지장 스펙트럼으로부터 계산되었다. 지진모멘트(M0), 코너주파수(f0), 지진원 반경(r) 및 응력강하량($\Delta$$\sigma$)은 각각 M0 = 3.18$\times$1024 dyne-cm, f0=0.3 Hz, r=3.7km, $\Delta$$\sigma$=27bar로 구해졌다. 지진모멘트로부터 산정한 모멘트 규모는 5.6으로 나타났다.

  • PDF

지진원 영상화를 위한 엇갈린 격자 유한 차분법을 이용한 지진파 역행 전파 모의 (Imaging of seismic sources by time-reversed wave propagation with staggered-grid finite-difference method)

  • 신동훈;황의홍;류용규;윤용훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.25-32
    • /
    • 2006
  • We present a imaging method of seismic sources by time reversal propagation of seismic waves. Time-reversal wave propagation is actively used in medical imaging, non destructive testing and waveform tomography. Time-reversal wave propagation is based on the time-reversal invariance and the spatial reciprocity of the wave equation. A signal is recorded by an array of receivers, time-reversed and then back-propagated into the medium. The time-reversed signal propagates back into the same medium and the energy refocuses back at the source location. The increasing power of computers and numerical methods makes it possible to simulate more accurately the propagation of seismic waves in heterogenous media. In this work, a staggered-grid finite-difference solution of the elastic wave equation is employed for the wave propagation simulation. With numerical experiments, we show that the time-reversal imaging will enable us to explore the spatio-temporal history of complex earthquake.

  • PDF

Markov Envelope를 이용한 지진동의 위상차 확률분포와 전파지연시간의 추정 (Inference of the Probability Distribution of Phase Difference and the Path Duration of Ground Motion from Markov Envelope)

  • 최항;윤병익
    • 한국지진공학회논문집
    • /
    • 제26권5호
    • /
    • pp.191-202
    • /
    • 2022
  • Markov envelope as a theoretical solution of the parabolic wave equation with Markov approximation for the von Kármán type random medium is studied and approximated with the convolution of two probability density functions (pdf) of normal and gamma distributions considering the previous studies on the applications of Radiative Transfer Theory (RTT) and the analysis results of earthquake records. Through the approximation with gamma pdf, the constant shape parameter of 2 was determined regardless of the source distance ro. This finding means that the scattering process has the property of an inhomogeneous single-scattering Poisson process, unlike the previous studies, which resulted in a homogeneous multiple-scattering Poisson process. Approximated Markov envelope can be treated as the normalized mean square (MS) envelope for ground acceleration because of the flat source Fourier spectrum. Based on such characteristics, the path duration is estimated from the approximated MS envelope and compared to the empirical formula derived by Boore and Thompson. The results clearly show that the path duration increases proportionately to ro1/2-ro2, and the peak value of the RMS envelope is attenuated by exp (-0.0033ro), excluding the geometrical attenuation. The attenuation slope for ro≤100 km is quite similar to that of effective attenuation for shallow crustal earthquakes, and it may be difficult to distinguish the contribution of intrinsic attenuation from effective attenuation. Slowly varying dispersive delay, also called the medium effect, represented by regular pdf, governs the path duration for the source distance shorter than 100 km. Moreover, the diffraction term, also called the distance effect because of scattering, fully controls the path duration beyond the source distance of 300 km and has a steep gradient compared to the medium effect. Source distance 100-300 km is a transition range of the path duration governing effect from random medium to distance. This means that the scattering may not be the prime cause of peak attenuation and envelope broadening for the source distance of less than 200 km. Furthermore, it is also shown that normal distribution is appropriate for the probability distribution of phase difference, as asserted in the previous studies.

물리 기반 유한 단층 미끌림 역산을 위한 CPInterface (COMSOL-PyLith Interface) 개발 (Development of a CPInterface (COMSOL-PyLith Interface) for Finite Source Inversion using the Physics-based Green's Function Matrix)

  • 김민수;소병달
    • 지구물리와물리탐사
    • /
    • 제26권4호
    • /
    • pp.268-274
    • /
    • 2023
  • 유한 단층 미끌림 역산에는 지진 변위 측지 자료와 그린 함수 행렬(Green's function matrix)을 주로 사용한다. 그린 함수 행렬은 일반적으로 오카다 모형(Okada, 1985)을 기반으로 한다. 그러나 최근 물리 기반 지진 모델링을 활용하여 그린 함수 행렬을 제작하고 유한 단층 미끌림 역산을 수행하는 연구가 활발하다. 물리 기반 지진 모델링은 다양한 물성(탄성, 점탄성, 탄소성 등)을 고려하여 현실적인 환경에서 지진을 모사할 수 있다는 장점이 있다. 물리 기반 유한요소 소프트웨어 PyLith는 단층을 구성하는 절점을 두 개로 나누어 지진을 모사할 수 있으므로 지진 모사 모델링에 적합하다. 하지만 PyLith는 격자망 생성 기능을 자체 제공하지 않아, 모형 내부에 수십~수백 개의 소단층과 관측점을 설정해야 하는 유한 단층 미끌림 역산 수행에는 어려움이 있다. 본 연구에서는 소단층과 관측점을 포함한 수치 모형을 제작하고, 지진 모사 모델링을 수행하여 그린 함수 행렬을 제작하는 일련의 과정을 연계하여 유한 단층 미끌림 역산의 편리성을 높이기 위해 CPInterface (COMSOL-PyLith Interface)를 개발하였다. CPInterface는 COMSOL의 격자 생성 능력과 PyLith의 지진 모사 능력을 결합하여 그린 함수 행렬을 자동으로 생성할 수 있다. CPInterface는 간단한 변수들로 모형 및 단층 정보를 조절할 수 있고, 지하 탄성 이상체와 GPS 관측점을 자유롭게 배치할 수 있다. 또한, 그린 함수 행렬을 생성하는 복잡한 과정을 간소화하여 더욱 편리하게 유한 단층 미끌림 역산을 할 수 있게 한다.

Fragility assessment of RC-MRFs under concurrent vertical-horizontal seismic action effects

  • Farsangi, Ehsan Noroozinejad;Tasnimi, Abbas Ali;Mansouri, Babak
    • Computers and Concrete
    • /
    • 제16권1호
    • /
    • pp.99-123
    • /
    • 2015
  • In this study, structural vulnerability of reinforced concrete moment resisting frames (RC-MRFs) by considering the Iran-specific characteristics is investigated to manage the earthquake risk in terms of multicomponent seismic excitations. Low and medium rise RC-MRFs, which constitute approximately 80-90% of the total buildings stock in Iran, are focused in this fragility-based assessment. The seismic design of 3-12 story RC-MRFs are carried out according to the Iranian Code of Practice for Seismic Resistant Design of Buildings (Standard No. 2800), and the analytical models are formed accordingly in open source nonlinear platforms. Frame structures are categorized in three subclasses according to the specific characteristics of construction practice and the observed seismic performance after major earthquakes in Iran. Both far and near fields' ground motions have been considered in the fragility estimation. An optimal intensity measure (IM) called Sa, avg and beta probability distribution were used to obtain reliable fragility-based database for earthquake damage and loss estimation of RC buildings stock in urban areas of Iran. Nonlinear incremental dynamic analyses by means of lumped-parameter based structural models have been simulated and performed to extract the fragility curves. Approximate confidence bounds are developed to represent the epistemic uncertainties inherent in the fragility estimations. Consequently, it's shown that including vertical ground motion in the analysis is highly recommended for reliable seismic assessment of RC buildings.

Origin of the anomalously large upward acceleration associated with the 2008 Iwate-Miyagi Nairiku earthquake

  • Takabatake, Hideo;Matsuoka, Motohiro
    • Earthquakes and Structures
    • /
    • 제3권5호
    • /
    • pp.675-694
    • /
    • 2012
  • The 2008 Iwate-Miyagi Nairiku earthquake ($M_w$ 6.9, $M_{jma}$ 7.2) occurred on 14 June 2008 in Japan. The amplification and asymmetric waveform of the vertical acceleration at the ground surface recorded by accelerometers at station IWTH25, situated 3 km from the source, were remarkable in two ways. First, the vertical acceleration was extremely large (PGA = 38.66 $m/s^2$ for the vertical component, PGA = 42.78 $m/s^2$ for the sum of the three components). Second, an unusual asymmetric waveform, which is too far above the zero acceleration axis, as well as large upward spikes were observed. Using a multidegree-of-freedom (MDF) system consisting of a one-dimensional continuum subjected to vertical acceleration recorded at a depth of 260 m below ground level, the present paper clarifies numerically that these singular phenomena in the surface vertical acceleration records occurred as a result of the jumping and collision of a layer in vertical motion. We herein propose a new mechanism for such jumping and collision of ground layers. The unexpected extensive landslides that occurred in the area around the epicenter are believed to have been produced by such jumping under the influence of vertical acceleration.

System-level performance of earthquake-damaged concrete bridges with repaired columns

  • Giacomo Fraioli;Yu Tang;Yang Yang;Lesley H. Sneed
    • Computers and Concrete
    • /
    • 제33권4호
    • /
    • pp.361-372
    • /
    • 2024
  • Reinforced concrete (RC) bridge columns are typically designated as the primary source of energy dissipation for a bridge structure during an earthquake. Therefore, seismic repair of RC bridge columns has been studied extensively during the past several decades. On the other hand, few studies have been conducted to evaluate how repaired column members influence the system-level response of an RC bridge structure in subsequent earthquakes. In this study, a numerical model was established to simulate the response of two large-scale RC columns, repaired using different techniques, reported in the literature. The columns were implemented into a prototype bridge model that was subjected to earthquake loading. Incremental dynamic analysis (IDA) and fragility analysis were conducted on numerical bridge models to evaluate the efficacy of the repairs and the post-repair seismic performance of the prototype bridge that included one or more repaired columns in various locations. For the prototype bridge herein modeled, the results showed that a confinement-enhanced oriented repair would not affect the seismic behavior of the prototype bridge. Increasing the strength of the longitudinal reinforcement could effectively reduce the drift of the prototype bridge in subsequent earthquakes. A full repair configuration for the columns was the most effective method for enhancing the seismic performance of the prototype bridge. To obtain a positive effect on seismic performance, a minimum of two repaired columns was required.

Effects of strong ground motions of near source earthquakes on response of thin-walled L-shaped steel bridge piers

  • Xie, Guanmo;Taniguchi, Takeo;Chouw, Nawawi
    • Structural Engineering and Mechanics
    • /
    • 제12권3호
    • /
    • pp.341-346
    • /
    • 2001
  • Near source earthquakes can be characterized not only by strong horizontal but also by strong vertical ground motions with broad range of dominant frequencies. The inelastic horizontal response of thin-walled L-shaped steel bridge piers, which are popularly used as highway bridge supports, subjected to simultaneous horizontal and vertical ground excitations of near source earthquakes is investigated. A comprehensive damage index and an evolutionary-degrading hysteretic model are applied. Numerical analysis reveals that the strong vertical excitation of a near source earthquake exerts considerable influences on the damage development and horizontal response of thin-walled L-shaped steel bridge piers.