• Title/Summary/Keyword: earthquake simulation test

Search Result 117, Processing Time 0.023 seconds

Three-Dimensional Simulation of Seismic Wave Propagation in Elastic Media Using Finite-Difference Method (유한차분법을 이용한 3차원 지진파 전파 모의)

  • 강태섭
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.81-88
    • /
    • 2000
  • The elastic wave equation is solved using the finite-difference method in 3D space to simulate the seismic wave propagation. It is based on the velocity-stress formulation of the equation of motion on a staggered grid. The nonreflecting boundary conditions are used to attenuate the wave field close to the numerical boundary. To satisfy the stress-free conditions at the free-surface boundary, a new formulation combining the zero-stress formalism with the vacuum one is applied. The effective media parameters are employed to satisfy the traction continuity condition across the media interface. With use of the moment-tensor components, the wide range of source mechanism parameters can be specified. The numerical experiments are carried out in order to test the applicability and accuracy of this scheme and to understand the fundamental features of the wave propagation under the generalized elastic media structure. Computational results show that the scheme is sufficiently accurate for modeling wave propagation in 3D elastic media and generates all the possible phases appropriately in under the given heterogeneous velocity structure. Also the characteristics of the ground motion in an sedimentary basin such as the amplification, trapping, and focusing of the elastic wave energy are well represented. These results demonstrate the use of this simulation method will be helpful for modeling the ground motion of seismological and engineering purpose like earthquake hazard assessment, seismic design, city planning, and etc..

  • PDF

Inelatic Behaviors of A 3-Story Reinforced Concrete Frame with Nonseismic Details (비내진 상세를 가진 3층 철근콘크리트 골조의 비탄성 거동)

  • 이한선;우성우;허윤섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.427-432
    • /
    • 1998
  • The objective of this research is to observe the actual response of low-rise nonseismic moment-resisting reinforced frame subjected to varied levels of earthquake ground motions. First of all, the reduction scale for the model was determined as 1 : 5 considering the capacity of the shaking table to be used. This model was, then, subjected to the shaking table motions simulating Taft N21E component earthquake ground motions, whose peak ground accelerations(PGA's) were modified to 0.12g, 0.2g, 0.3g, and 0.4g. The global behavior and failure mode were observed. The lateral accelerations and displacements at each story and local deformations at the critical portions of structure were measured. The base shear was measured by using specially made load cells. Before and after each earthquake simulation test, free vibration tests were performed to find the changes in the natural period and damping ratio of the model.

  • PDF

Simulation of the damping effect of a high-rise CRST frame structure

  • Lu, Xilin;Zhang, Hongmei;Meng, Chunguang
    • Computers and Concrete
    • /
    • v.9 no.4
    • /
    • pp.245-255
    • /
    • 2012
  • The damping effect of a Concrete-filled Rectangular Steel Tube (CRST) frame structure is studied in this paper. Viscous dampers are employed to insure the function of the building especially subjected to earthquakes, for some of the main vertical elements of the building are not continuous. The shaking table test of a 1:15 scale model was conducted under different earthquake excitations to recognize the seismic behavior of this building. And the vibration damping effect was also investigated by the shaking table test and the simulation analysis. The nonlinear time-history analysis of the shaking table test model was carried out by the finite element analysis program CANNY. The simulation model was constructed in accordance with the tested one and was analyzed under the same loading condition and the simulation effect was then validated by the tested results. Further more, the simulation analysis of the prototype structure was carried out by the same procedure. Both the simulated and tested results indicate that there are no obvious weak stories on the damping equipped structure, and the dampers can provide the probability of an irregular CRST frame structure to meet the requirements of the design code on energy dissipation and deformation limitation.

An Experimental Study on the Structural Vibration Control Using Orificed Fluid Dampers (Orificed Fluid Dapper를 이용한 구조물 진동계어의 실험적 연구)

  • 정태영;임채욱;김병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.364-372
    • /
    • 2001
  • An orifices fluid damper(OFD) having the capacity of about 2 tons was designed and fabricated and applied to a 6-story steel structure under random excitation and seismic excitation for the confirmation of its validity on structural vibration absorbtion. The experimental results demonstrated that the addition of an OFD to the test structure is very effective in reduction of vibration level of the higher modes as well as the fundamental mode. Maxwell model was adopted to described the frequency-dependent characteristics of the fabricated OFD and the numerical simulation was carried for the test structure. It was confirmed that the experimental and numerically simulated results agree well.

  • PDF

Design and Construction of a 1:5 Scale 10-Story R.C. Apartment Building Model for Earthquake Simulation Tests (지진모의실험을 위한 10층 R.C. 공동주택의 1:5 축소모델 설계 및 시공)

  • Hwang, Seong-Jun;Lee, Kyung-Bo;Kang, Chang-Bum;Lee, Han-Seon;Lee, Sang-Ho;Oh, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.55-66
    • /
    • 2011
  • The purpose of this study was to develop an efficient process in the design and construction of a 1:5 scale 10-story R.C. apartment building model for an earthquake simulation test. The reduction ratio of the specimen was determined by the size ($5m{\times}5m$) and pay load (600kN) of the available shaking table and the availability of model reinforcements. For efficiency and quality control of the reinforcement work, prefabrication was used. Construction was conducted in two steps, the wall in one step, and another step for the slab, because it was impossible to remove the formwork of a wall if the walls and slabs in a story were constructed in one step. The slip form construction method was used repetitively for walls. The formwork of a wall was made with veneer and acryl plate on each side, so it was possible to check the quality of the concrete placing. To construct this model, it took roughly six months with five full-time research assistants, for a total of 602 man days of labor in construction.

Dynamic response and waterproof property of tunnel segmental lining subjected to earthquake action

  • Yan, Qixiang;Bao, Rui;Chen, Hang;Li, Binjia;Chen, Wenyu;Dai, Yongwen;Zhou, Hongyuan
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.411-424
    • /
    • 2019
  • In this study, a numerical model of a shield tunnel with an assembled segmental lining was built. The seismic response of the segmental lining of the section of the shield tunnel in Line 1 of the Chengdu Metro is analyzed as it passes through the interface of sand-cobble and mudstone layers. To do so, the node-stress seismic-motion input method was used to input the seismic motion measured during the 2008 Wenchuan earthquake, and the joint openings and dislocations associated with the earthquake action were obtained. With reference to the Ethylene-Propylene-Diene Monomer (EPDM) sealing gaskets used in the shield tunnels in the Chengdu Metro, numerical simulation was applied to analyze the contact pressure along the seepage paths and the waterproof property under different joint openings and dislocations. A laboratory test on the elastic sealing gasket was also conducted to study its waterproof property. The test results accord well with the numerical results and the occurrence of water seepage in the section of the shield tunnel in Line 1 of the Chengdu Metro during the 2008 Wenchuan earthquake was verified. These research results demonstrate the deformation of segmental joint under earthquake, also demonstrate the relationship between segmental joint deformation and waterproof property.

Bridge Simulation System with Soil-Foundation-Structure Interaction (지반 구조 상호작용을 고려한 교량 시뮬레이션 시스템)

  • Kim, Ik-Hwan;Han, Bong-Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.168-178
    • /
    • 2008
  • The hybrid simulation test method is a versatile technique for evaluating the seismic performance of structures by seamlessly integrating both physical and numerical simulations of substructures into a single test mode. In this paper, a software framework that integrates computational and experimental simulation has been developed to simulate and test a bridge structural system under earthquake loading. Using hybrid simulation, the seismic response of complex bridge structural systems partitioned into multiple large-scale experimental and computational substructures at networked distributed experimental and computational facilities can be evaluated. In this paper, the examples of application are presented in terms of a bridge model with soil-foundation-structure interaction.

Shake table responses of an RC low-rise building model strengthened with buckling restrained braces at ground story

  • Lee, Han Seon;Lee, Kyung Bo;Hwang, Kyung Ran;Cho, Chang Seok
    • Earthquakes and Structures
    • /
    • v.5 no.6
    • /
    • pp.703-731
    • /
    • 2013
  • In order to verify the applicability of buckling restrained braces (BRB's) and fiber reinforced polymer (FRP) sheets to the seismic strengthening of a low-rise RC building having the irregularities of a soft/weak story and torsion at the ground story, a series of earthquake simulation tests were conducted on a 1:5 scale RC building model before, and after, the strengthening, and these test results are compared and analyzed, to check the effectiveness of the strengthening. Based on the investigations, the following conclusions are made: (1) The BRB's revealed significant slips at the joint with the existing RC beam, up-lifts of columns from RC foundations and displacements due to the flexibility of foundations, and final failure due to the buckling and fracture of base joint angles. The lateral stiffness appeared to be, thereby, as low as one seventh of the intended value, which led to a large yield displacement and, therefore, the BRB's could not dissipate seismic input energy as desired within the range of anticipated displacements. (2) Although the strengthened model did not behave as desired, great enhancement in earthquake resistance was achieved through an approximate 50% increase in the lateral resistance of the wall, due to the axial constraint by the peripheral BRB frames. Finally, (3) whereas in the original model, base torsion was resisted by both the inner core walls and the peripheral frames, the strengthened model resisted most of the base torsion with the peripheral frames, after yielding of the inner core walls, and represented dual values of torsion stiffness, depending on the yielding of core walls.

Seismic Capacity Test of Nuclear Piping System using Multi-platform Shake Table (다지점 진동대를 이용한 원자력발전소 배관계통의 내진성능실험)

  • Cheung, Jin-Hwan;Gae, Man-Soo;Seo, Young-Deuk;Choi, Hyoung-Suk;Kim, Min-Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.21-31
    • /
    • 2013
  • In this study, dynamic characteristics and seismic capacity of the nuclear power plant piping system are evaluated by model test results using multi-platform shake table. The model is 21.2 m long and consists of straight pipes, elbows, and reducers. The stainless steel pipe diameters are 60.3 mm (2 in.) and 88.9 mm (3 in.) and the system was assembled in accordance with ASME code criteria. The dynamic characteristics such as natural frequency, damping and acceleration responses of the piping system were estimated using the measured acceleration, displacement and strain data. The natural frequencies of the specimen were not changed significantly before and after the testing and the failure and leakage of the piping system was not observed until the final excitation. The damping ratio was estimated in the range of 3.13 ~ 4.98 % and it is found that the allowable stress(345 MPa) according to ASME criteria is 2.5 times larger than the measured maximum stress (138 MPa) of the piping system even under the maximum excitation level of this test.

Shake Table Test on Seismic Performance Evaluation of the Bolted Connection Type Paneling System with Exterior Finish Material (외부마감재가 부착된 볼트접합 방식 패널링 시스템의 내진성능평가를 위한 진동대 실험)

  • Oh, Sang Hoon;Park, Jong Won;Park, Hae Yong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.23-32
    • /
    • 2018
  • In this study, we conducted a shake table test to verify the seismic performance of the paneling system with steel truss composed of bolt connections. The control group was set to the traditional paneling system with steel truss connected by spot welding method. Test results showed that the bolted connection type paneling system has excellent deformation capacity without cracking or brittle fracture of the steel truss connection parts compared to the welding type paneling system. Furthermore, in the bolted connection type, slight damage occurred at the time of occurrence of the same story drift angle as compared with the existing method, it is considered that it has excellent seismic performance. In compliance with the performance-based design recommended for the current code (ASCE 41-13) on non-structural components, it is judged that in the case of the bolted connection type paneling system, it can be applied to all risk category structures without restriction. However, in the case of traditional paneling system with spot welding method, it is considered that it can be applied limitedly.