• Title/Summary/Keyword: earthquake simulation

Search Result 524, Processing Time 0.026 seconds

Simulation of Tsunamis in the East Sea Using Dynamically-Interfaced Multi-Grid Model (동적결합둥지형 모형에 의한 동해안 쓰나미 시뮬레이션)

  • Choi, Byung-Ho;Efim, Pelinovsky;Woo, Seung-Buhm;Lee, Jong-Woong;Mun, Jong-Yoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.41-55
    • /
    • 2003
  • A dynamically-interfaced multi-grid finite difference model for simulation of tsunamis in the East Sea(Choi et al.) was established and further applied to produce detailed feature of coastal inundations along the whole eastern coast of Korea. The computational domain is composed of several sub-regions with different grid sizes connected in parallel of inclined directions with 16 innermost nested models. The innermost sub-region represents the coastal alignment reasonably well and has a grid size of about 30 meters. Numerical simulations have been performed in the framework of shallow-water equations(linear, as well as nonlinear) over the plane or spherical coordinate system, depending on the dimensions of the sub-region. Results of simulations show the general agreements with the observed data of run-up height for both tsunamis. The evolution of the distribution function of tsunami heights is studied numerically and it is shown that it tends to the log-normal curve for long distance from the source.

Verification of Hybrid Structural Test Technique by Shaking Table Test of a Linear 2-Dimensional Frame Model (소형선형 평면뼈대모형의 진동대실험을 통한 하이브리드실험 기법의 검증)

  • Cho, Sung-Min;Choi, In-Gyu;Jung, Dae-Sung;Kim, Chul-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.33-43
    • /
    • 2010
  • This paper deals with the hybrid structural test technique which has been introduced and studied currently in Korea. In this study, a Mini-MOST system which was developed as a part of NEES research was modified and improved to reduce the total simulation time to half of the original system. Using the proposed system together with the 2 dimensional small steel frame specimen, the validity and efficiency of the hybrid test technique is investigated. Even though the hybrid test has been developed as an alternative to the shaking table test and has been studied and applied for a long time in several countries, no attempt has been made to compare it directly with the shaking table test. Therefore, in this study, the hybrid test results are compared with those of the shaking table test as well as with a numerical simulation for the verification of hybrid test. From the comparison and analysis of the test results, it is concluded that the hybrid test can simulate the actual seismic behavior of structural systems very accurately and it can be a good alternative to the shaking table test.

Simulation of Dynamic in-situ Soil Properties for the Centrifuge Test (Hualien Site in Taiwan) (원심 모형 시험을 위한 동적 현장 지반 모사 기법 연구(대만 화련 지반))

  • Ha, Jeong-Gon;Lee, Sei-Hyun;Choo, Yun-Wook;Kim, Se-Hee;Kim, Dong-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.27-36
    • /
    • 2012
  • The simulation of the field dynamic soil properties for soil modeling in the centrifuge test is important. In this study, the process of soil modeling based on the shear wave velocity profile is developed. From the resonant column test in each confining pressure, the shear wave velocity profile is expected and the modeling condition is determined by comparing it with that in the field. During the dynamic centrifuge test, the bender element test is performed for measuring the in-flight shear wave velocity profile, and the applicability of the proposed method was verified. This modeling method is applied to the centrifuge test of the Hualien Large-Scale Seismic test.

Seismic Fragility Analysis of Base Isolated NPP Piping Systems (지진격리된 원전배관의 지진취약도 분석)

  • Jeon, Bub Gyu;Choi, Hyoung Suk;Hahm, Dae Gi;Kim, Nam Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.29-36
    • /
    • 2015
  • Base isolation is considered as a seismic protective system in the design of next generation Nuclear Power Plants (NPPs). If seismic isolation devices are installed in nuclear power plants then the safety under a seismic load of the power plant may be improved. However, with respect to some equipment, seismic risk may increase because displacement may become greater than before the installation of a seismic isolation device. Therefore, it is estimated to be necessary to select equipment in which the seismic risk increases due to an increase in the displacement by the installation of a seismic isolation device, and to perform research on the seismic performance of each piece of equipment. In this study, modified NRC-BNL benchmark models were used for seismic analysis. The numerical models include representations of isolation devices. In order to validate the numerical piping system model and to define the failure mode, a quasi-static loading test was conducted on the piping components before the analysis procedures. The fragility analysis was performed by using the results of the inelastic seismic response analysis. Inelastic seismic response analysis was carried out by using the shell finite element model of a piping system considering internal pressure. The implicit method was used for the direct integration time history analysis. In addition, the collapse load point was used for the failure mode for the fragility analysis.

Design of Semi-Active Tendon for Vibration Control of Large Structures (대형 구조물의 진동제어를 위한 반능동형 댐퍼의 설계)

  • Kim, Saang-Bum;Yun, Chung-Bang;Gu, Ja-In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.282-286
    • /
    • 2000
  • In this paper, magneto-rheological(MR) damper is studied for vibration control of large infra structures under earthquake. Generally, active control devices need a large control force and a high power supply system to reduce the vibration effectively. Large and miss tuned control force may induce the dangerous situation such that the generated large control force acts to amplify the structural vibration. Recently, to overcome the weaknesses of the active control, the semi-active control method is suggested by many researchers. Semi-active control uses the passive control device of which the characteristics can be modified. Control force of the semi-active device is not generated from the actuator with power supply. It is generated as a dynamic reaction force of the device same as in the passive control case, so the control system is inherently stable and robust. Unlike the case of passive control, control force of semi-active control is adjusted depending on the measured response of the structure, so the vibration can be reduced more effectively against various unknown environmental loads. Magneto-rheological(MR) damper is one of the semi-active devices. Dynamic characteristics of the MR material can be changed by applying the magnetic fields. So the control of MR damper needs only small power. Response time of MR to the input voltage is very short, so the high performance control is possible. MR damper has a high force capacity so it is adequate to the vibration control of large infra structure. Because MR damper has a nonlinear property, normal control method used in active control may not be effective. Clipped optimal control, modified bang-bang control etc. have been suggested to MR damper by many researchers. In this study, sliding mode fuzzy control(SMFC) is applied to MR damper. Genetic algorithm is used for the controller tuning. To verify the applicability of MR damper and suggested algorithm, numerical simulation on the aseismic control is carried out. Simulation model is three-story building structure, which was used in the paper of Dyke, et al. The control performance is compared with clipped optimal control. The present results indicate that the SMFC algorithm can reduce the earthquake-induced vibration very effectively.

  • PDF

Research on the anti-seismic performance of composite precast utility tunnels based on the shaking table test and simulation analysis

  • Yang, Yanmin;Li, Zigen;Li, Yongqing;Xu, Ran;Wang, Yunke
    • Computers and Concrete
    • /
    • v.27 no.2
    • /
    • pp.163-173
    • /
    • 2021
  • In this paper, the parameters of haunch height, reinforcement ratio and site condition were evaluated for the influence on the seismic performance of a composite precast fabricated utility tunnel by shaking table test and numerical simulation. The dynamic response laws of acceleration, interlayer displacement and steel strain under unidirectional horizontal seismic excitation were analyzed through four specimens with a similarity ratio of 1:6 in the test. And a numerical model was established and analyzed by the finite element software ABAQUS based on the structure of utility tunnel. The results indicated that composite precast fabricated utility tunnel with the good anti-seismic performance. In a certain range, increasing the height of haunch or the ratio of reinforcement could reduce the influence of seismic wave on the utility tunnel structure, which was beneficial to the structure earthquake resistance. The clay field containing the interlayer of liquefied sandy soil has a certain damping effect on the structure of the utility tunnel, and the displacement response could be reduced by 14.1%. Under the excitation of strong earthquake, the reinforcement strain at the side wall upper end and haunches of the utility tunnel was the biggest, which is the key part of the structure. The experimental results were in good agreement with the fitting results, and the results could provide a reference value for the anti-seismic design and application of composite precast fabricated utility tunnel.

Integrated Health Monitoring System for Infra-Structure (도시인프라 구조물 건전성 통합 모니터링 시스템)

  • Ju, Seung-Hwan;Seo, Hee-Suk;Lee, Seung-Hwan;Kim, Min-Soo
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.2
    • /
    • pp.147-155
    • /
    • 2010
  • It often occur to nature disaster that like earthquake, typhoon, etc. around KOREA. A Haiti and Chile also metropolitan area of KOREA occur earthquake. in result, People consider nature disaster. Structures of present age are easily affected by nature disaster. So we are important that warn of dangerous situation as soon as possible. On this study, I introduce Integrated Health Monitoring System for Infra-structure. I develop Structure Health Monitoring System on web-site. Administrator always monitor structure on real-time using internet network. As Administrator using mobile device like PDA, Administrator always monitor structure. As using this system, Damage of nature disaster is minimized and is prevented post damage.

Micro-vibration Control in Concrete Slabs (콘크리트 슬래브의 미진동 제어)

  • 노병철;변근주;양재성
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.63-72
    • /
    • 1998
  • This study is to develop a technique for micro-vibration analysis and control of concrete slabs to fulfil the vibration criteria for working environments. The proposed technique is for determining the unknown forces from accelerance of two concerned points and the micro-vibration analysis and control of concrete slabs are then validated by numerical model and structural tests. And it is recommended that the natural frequency of structures for micro-vibration control design should be above 25 Hz~30 Hz, and 1.5 times forcing frequency in case of 3~5% structural damping ratio of concrete structures.

  • PDF

Experimental study and modelling of CFRP-confined damaged and undamaged square RC columns under cyclic loading

  • Su, Li;Li, Xiaoran;Wang, Yuanfeng
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.411-427
    • /
    • 2016
  • While the cyclic behaviour of fiber-reinforced polymer (FRP)-confined columns is studied rather extensively, the cyclic response especially the energy dissipation of FRP-confined damaged and undamaged square RC columns is not yet fully understood. In this paper, an experimental and numerical investigation was conducted to study the cyclic behavior of two different types of Carbon FRP (CFRP)-confined square RC columns: strengthened and repaired. The main variables investigated are initial damage, confinement of CFRP, longitudinal steel reinforcement ratio. The experimental results show that lower initial damage, added confinement with CFRP and longitudinal reinforcement enhance the ductility, energy dissipation capacity and strength of the columns, decrease the stiffness and strength degradation rates of all CFRP-confined square RC columns. Two hysteretic constitutive models were developed for confined damaged and undamaged concrete and cast into the non-linear beam-column fiber-based models in the software Open System for Earthquake Engineering Simulation (OpenSees) to analyze the cyclic behavior of CFRP-confined damaged and undamaged columns. The results of the numerical models are in good agreement with the experiments.

Damage Detection for Bridge Pier System Using filbert-Huang Transom Technique (Hilbert-Huang변환을 이용한 교각시스템의 손상위치 추정기법)

  • 윤정방;심성한;장신애
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.159-168
    • /
    • 2002
  • A recently developed filbert-Huang transform (HHT) technique is applied to detect damage locations of bridge structures. The HHT may be used to identify the locations of damages which exhibit nonlinear and nonstationary behavior, since the HHT can show the instantaneous frequency characteristics of the signal. A series of numerical simulations were conducted for bridge pier systems with damages under a controlled load with sweeping frequency. The results of the numerical simulation study indicate that the HHT method can reasonably identify damage locations using a limited number of acceleration sensors under severe measurement noise condition.

  • PDF