• Title/Summary/Keyword: earthquake signal

Search Result 99, Processing Time 0.025 seconds

Dynamic characteristics monitoring of wind turbine blades based on improved YOLOv5 deep learning model

  • W.H. Zhao;W.R. Li;M.H. Yang;N. Hong;Y.F. Du
    • Smart Structures and Systems
    • /
    • 제31권5호
    • /
    • pp.469-483
    • /
    • 2023
  • The dynamic characteristics of wind turbine blades are usually monitored by contact sensors with the disadvantages of high cost, difficult installation, easy damage to the structure, and difficult signal transmission. In view of the above problems, based on computer vision technology and the improved YOLOv5 (You Only Look Once v5) deep learning model, a non-contact dynamic characteristic monitoring method for wind turbine blade is proposed. First, the original YOLOv5l model of the CSP (Cross Stage Partial) structure is improved by introducing the CSP2_2 structure, which reduce the number of residual components to better the network training speed. On this basis, combined with the Deep sort algorithm, the accuracy of structural displacement monitoring is mended. Secondly, for the disadvantage that the deep learning sample dataset is difficult to collect, the blender software is used to model the wind turbine structure with conditions, illuminations and other practical engineering similar environments changed. In addition, incorporated with the image expansion technology, a modeling-based dataset augmentation method is proposed. Finally, the feasibility of the proposed algorithm is verified by experiments followed by the analytical procedure about the influence of YOLOv5 models, lighting conditions and angles on the recognition results. The results show that the improved YOLOv5 deep learning model not only perform well compared with many other YOLOv5 models, but also has high accuracy in vibration monitoring in different environments. The method can accurately identify the dynamic characteristics of wind turbine blades, and therefore can provide a reference for evaluating the condition of wind turbine blades.

Signal processing based damage detection in structures subjected to random excitations

  • Montejo, Luis A.
    • Structural Engineering and Mechanics
    • /
    • 제40권6호
    • /
    • pp.745-762
    • /
    • 2011
  • Damage detection methodologies based on the direct examination of the nonlinear-nonstationary characteristics of the structure dynamic response may play an important role in online structural health monitoring applications. Different signal processing based damage detection methodologies have been proposed based on the uncovering of spikes in the high frequency component of the structural response obtained via Discrete Wavelet transforms, Hilbert-Huang transforms or high pass filtering. The performance of these approaches in systems subjected to different types of excitation is evaluated in this paper. It is found that in the case of random excitations, like earthquake accelerations, the effectiveness of such methodologies is limited. An alternative damage detection approach using the Continuous Wavelet Transform (CWT) is also evaluated to overcome this limitation. Using the CWT has the advantage that the central frequencies at which it operates can be defined by the user while the frequency bands of the detail functions obtained via DWT are predetermined by the sampling period of the signal.

능동 제어장치를 이용한 건물의 진동제어 (I): 시스템 설계 (Vibration Control for Building Structures usign Active Mass Driver(I) : System Design)

  • 민경원;김두훈;이성경;황재승
    • 한국지진공학회논문집
    • /
    • 제2권4호
    • /
    • pp.87-94
    • /
    • 1998
  • 현대의 고층건물들은 점차 유연해지고 경량화 됨으로 인하여 지진이나 바람과 같은 하중에 대하여 취약하다. 그러므로 이러한 하중에 대한 진동수준을 감소시키기 위하여 진동제어 시스템의 성능을 더욱 향상시킬 필요가 있으며 능동제어장치를 이용한 방법이 요구되고 있다 따라서 본 논문에서는 소형 진동대, 건물모델, 건물모델의 응답을 측정하는 센서, 신호처리 보드 그리고, 능동 질량 추진기로 구성된 능동 진동제어 시스템을 구축하였으며 이러한 개별 시스템들의 동적 특성을 실험적인 방법으로 조사하였다 또한 건물모델에 El Centro 지진을 가하여 능동 진동제어 시스템의 성능을 검증하였다,.

  • PDF

New development of artificial record generation by wavelet theory

  • Amiri, G. Ghodrati;Ashtari, P.;Rahami, H.
    • Structural Engineering and Mechanics
    • /
    • 제22권2호
    • /
    • pp.185-195
    • /
    • 2006
  • Nowadays it is very necessary to generate artificial accelerograms because of lack of adequate earthquake records and vast usage of time-history dynamic analysis to calculate responses of structures. According to the lack of natural records, the best choice is to use proper artificial earthquake records for the specified design zone. These records should be generated in a way that would contain seismic properties of a vast area and therefore could be applied as design records. The main objective of this paper is to present a new method based on wavelet theory to generate more artificial earthquake records, which are compatible with target spectrum. Wavelets are able to decompose time series to several levels that each level covers a specific range of frequencies. If an accelerogram is transformed by Fourier transform to frequency domain, then wavelets are considered as a transform in time-scale domain which frequency has been changed to scale in the recent domain. Since wavelet theory separates each signal, it is able to generate so many artificial records having the same target spectrum.

Development of the structural health record of containment building in nuclear power plant

  • Chu, Shih-Yu;Kang, Chan-Jung
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.2038-2045
    • /
    • 2021
  • The main objective of this work is to propose a reliable routine standard operation procedures (SOP) for structural health monitoring and diagnosis of nuclear power plants (NPPs). At present, NPPs have monitoring systems that can be used to obtain the quantitative health record of containment (CTMT) buildings through system identification technology. However, because the measurement signals are often interfered with by noise, the identification results may introduce erroneous conclusions if the measured data is directly adopted. Therefore, this paper recommends the SOP for signal screening and the required identification procedures to identify the dynamic characteristics of the CTMT of NPPs. In the SOP, three recommend methods are proposed including the Recursive Least Squares (RLS), the Observer Kalman Filter Identification/Eigensystem Realization Algorithm (OKID/ERA), and the Frequency Response Function (FRF). The identification results can be verified by comparing the results of different methods. Finally, a preliminary CTMT healthy record can be established based on the limited number of earthquake records. It can be served as the quantitative reference to expedite the restart procedure. If the fundamental frequency of the CTMT drops significantly after the Operating Basis Earthquake and Safe Shutdown Earthquake (OBE/SSE), it means that the restart actions suggested by the regulatory guide should be taken in place immediately.

El-centro 지진파형을 이용한 CAFB의 최적화 및 교량 지진응답실험에 관한 연구 (A Study on the Optimization and Bridge Seismic Response Test of CAFB Using El-centro Seismic Waveforms)

  • 허광희;이진옥;서상구;박진용;전준용
    • 한국지진공학회논문집
    • /
    • 제24권2호
    • /
    • pp.67-76
    • /
    • 2020
  • This study aims to optimize the cochlea-inspired artificial filter bank (CAFB) using El-Centro seismic waveforms and test its performance through a shaking table test on a two-span bridge model. In the process of optimizing the CAFB, El-Centro seismic waveforms were used for the purpose of evaluating how they would affect the optimizing process. Next, the optimized CAFB was embedded in the developed wireless-based intelligent data acquisition (IDAQ) system to enable response measurement in real-time. For its performance evaluation to obtain a seismic response in real-time using the optimized CAFB, a two-span bridge (model structures) was installed in a large shaking table, and a seismic response experiment was carried out on it with El-Centro seismic waveforms. The CAFB optimized in this experiment was able to obtain the seismic response in real-time by compressing it using the embedded wireless-based IDAQ system while the obtained compressed signals were compared with the original signal (un-compressed signal). The results of the experiment showed that the compressed signals were superior to the raw signal in response performance, as well as in data compression effect. They also proved that the CAFB was able to compress response signals effectively in real-time even under seismic conditions. Therefore, this paper established that the CAFB optimized by being embedded in the wireless-based IDAQ system was an economical and efficient data compression sensing technology for measuring and monitoring the seismic response in real-time from structures based on the wireless sensor networks (WSNs).

2000년도 상반기 한반도 발생지진들의 응답 스펙트럼 분석 (An Analysis of Response Spectrums of Earthquakes of Korean Peninsula in the First Half of 2000)

  • 이전희
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.66-72
    • /
    • 2000
  • We have scanned the several seismic traces of earthquakes and blasts observed from the digital new type seismograph instruments of KMA from Jan. 2000 to Aug. 2000. From these data, good quality data which have high signal/noise ratio were selected and they were transformed into ascii data from binary data(mini-seed format). The hypo71 program and P-S was applied in order to determine the location of epicenter, origin time and the magnitude. From these data, the 18 earthquakes and 3 blasts, 207 seismic records consist of 359 directional components were calculated. Using theses ground acceleration data, acceleration, velocity, and displacement response spectrums of the structures were calculated and they could be represented in a picture by the form of tripartite response spectrum. In the result, response spectrums of the 359 directional components of the above seismic data records were obtained respectively.

  • PDF

Using harmonic class loading for damage identification of plates by wavelet transformation approach

  • Beheshti-Aval, S.B.;Taherinasab, M.;Noori, M.
    • Smart Structures and Systems
    • /
    • 제8권3호
    • /
    • pp.253-274
    • /
    • 2011
  • In this paper, the harmonic displacement response of a damaged square plate with all-over part-through damage parallel to one edge is utilized as the input signal function in wavelet analysis. The method requires the properties of the damaged plate, i.e., no information about the original undamaged structure is required. The location of damage is identified by sudden changes in the spatial variation of transformed response. The incurred damage causes a change in the stiffness or mass of the plate. This causes a localized singularity which can be identified by a wavelet analysis of the displacement response. In this study via numerical examples shown by using harmonic response is more versatile and effective compared with the static deflection response, specially in the presence of noise. In the light of the obtained results, suggestions for future work are presented and discussed.

2000년도 한반도 지진활동의 공학적 특성 (The Engineering Characteristics of Seismicity of Korean Peninsula in 2000)

  • 이전희
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.81-90
    • /
    • 2001
  • Several seismic traces of earthquakes observed from the digital new type seismograph instruments of KMA in 2000 were scanned. From these, good quality data which have high signal/noise ratio were selected and they were transformed into ascii data from binary data(min-seed format). The hypo71 program and P-S was applied in order to determine the location of epicenter, origin time and the magnitude. From these data, the 29 earthquakes, 358 seismic records consist of 587 directional components were calculated. Using these, ground acceleration data, acceleration, velocity, and displacemnet response spectrums of the structures were calculated and they could be represented in a picture by the form of tripartite response spectrum. In the result, response spectrums of the 587 directional components of the above seismic data records were obtained respectively.

  • PDF

Dynamic behavior of a seven century historical monument reinforced by shape memory alloy wires

  • Hamdaoui, Karim;Benadla, Zahira;Chitaoui, Houssameddine;Benallal, Mohammed Elamine
    • Smart Structures and Systems
    • /
    • 제23권4호
    • /
    • pp.337-345
    • /
    • 2019
  • This work resumes a research that proposes the use of the technique based on the dissipation energy of the shape memory alloy (SMA) ties. It focuses principally on the assessment of the effectiveness of the use of these smart materials on displacements, accelerations and the stresses of the minaret of the great mosque of Ajloun in Jordan. The 3-D finite element model of the minaret is performed by the ANSYS software. First of all, the proposed model is calibrated and validated according to the experimental results gathered from ambient vibration testing results. Then, a nonlinear transient analysis is considered, when the El-Centro earthquake is used as the input signal. Different simulating cases concerning the location, number and type of SMA devices are proposed in order to see their influence on the seismic response of the minaret. Hence, the results confirm the effectiveness of the proposed SMA device.