• Title/Summary/Keyword: earthquake safety

Search Result 883, Processing Time 0.025 seconds

Development of Seismic Safety Evaluation Indices for Dual-Plane, Cable-stayed Bridges With H-type Pylons (H형 주탑 2면 사장교의 지진 안전성 평가지표 개발)

  • Chimedsuren, Solongo;An, Hyo Joon;Shin, Soobong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.261-268
    • /
    • 2019
  • This paper proposes damage indices efficient on evaluating the seismic safety of cable-stayed bridges, especially dual-plane, cable-stayed bridges with H-type pylons. The research assumes that the location of accelerometers is already defined as given in the 2017 Ministry of the Interior and Safety (MOIS) guideline. In other words, the paper does not attempt to suggest optimal sensor location for the seismic safety evaluation of cable-stayed bridges. The proposed damage indices are based on those for building structures widely applied in the field already. Those include changes in natural frequencies and changes in relative lateral displacements. In addition, the study proposes other efficient damage indices as the rotation changes at the top of pylons and in the midspan of the girder system. Sensitivity analysis for various damage indices is performed through dynamic analysis using selected earthquake ground motions. The paper compares the effectiveness of the damage indices.

Post-earthquake fast building safety assessment using smartphone-based interstory drifts measurement

  • Hsu, Ting Y.;Liu, Cheng Y.;Hsieh, Yo M.;Weng, Chi T.
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.287-299
    • /
    • 2022
  • Rather than using smartphones as seismometers with designated locations and orientations, this study proposes to employ crowds' smartphones in buildings to perform fast safety assessment of buildings. The principal advantage of using crowds' smartphones is the potential to monitor the safety of millions of buildings without hardware costs, installation labor, and long-term maintenance. This study's goal is to measure the maximum interstory drift ratios during earthquake excitation using crowds' smartphones. Beacons inside the building are required to provide the location and relevant building information for the smartphones via Bluetooth. Wi-Fi Direct is employed between nearby smartphones to conduct peer-to-peer time synchronization and exchange the acceleration data measured. An algorithm to align the orientation between nearby smartphones is proposed, and the performance of the orientation alignment, interstory drift measurement, and damage level estimation are studied numerically. Finally, the proposed approach's performance is verified using large-scale shaking table tests of a scaled steel building. The results presented in this study illustrate the potential to use crowds' smartphones with the proposed approach to record building motions during earthquakes and use those data to estimate buildings' safety based on the interstory drift ratios measured.

Seismic Safety Analysis of Intake Tower with Hollow Inside Section (중공 단면을 갖는 취수탑의 내진 안전성 평가)

  • Bae, Jung-Joo;Kim, Yon-Gon;Lee, Jee-Ho;Han, Sang-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.55-61
    • /
    • 2009
  • Seismic Safety Analysis of Intake Tower is very important because failure of intake tower may incur huge chaos on the modem society. Recently, there has been growing much concern about earthquake resistance of existing structures. This research demonstrates the dynamic fluid pressure calculation using added mass simulation. The actual safety evaluation has been conducted through not only the static analysis but also the dynamic analysis. According to the analysis results, the vibration incurred by earthquake may induce considerable damage to the hydraulic structure. Therefore, the appropriate design process out of exact calculation is quite necessary.

Minimum magnitudes of earthquake catalog of Korea Meteorological Agency for the estimation of seismicity parameters (지진활동 매개변수 추정을 위한 기상청 지진목록의 최소규모 분석)

  • Noh, Myung-Hyun;Lee, Sang-Kook;Choi, Kang-Ryong
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.4
    • /
    • pp.261-268
    • /
    • 2000
  • Minimum magnitudes $(M_c)$ for estimation of seismicity parameters were analyzed for the earthquake catalog of Korea Meteorological Agency (KMA). The temporal variation of earthquake frequency suggests that a proper $M_c$ be 3.0 for the whole southern part of the Korean Peninsula. The b-value with $M_c$ of 3.0 is estimated to be 1.11, which is larger than those of the previous studies. To see the spatial variation of $M_c$, the southern part of the peninsula were divided into grids of $0.1{\times}0.1$ degree. At the greater portion of grid points, the local earthquake catalogs do not satisfy given statistical criteria. The grid points whose local earthquake catalogs meet the criteria mostly distribute in the eastern part. $M_c$ at these points range 2.4 to 3.5 and b values range 0.75 to 1.73 with the average of 1.08 which is comparable to that for the whole southern part of the peninsula.

  • PDF

Comparative Analysis of Earthquake Management in Pohang and Japan (포항 지진과 일본 지진관리 업무 비교·분석)

  • Kim, Su Ran;Kim, Hye Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.193-199
    • /
    • 2018
  • This study aims to create a disaster management system after an earthquake. Japan's earthquake disaster management system, including the Disaster Countermeasures Basic Act, addresses all of the disaster phases of prevention, mitigation, preparedness and emergency response as well as recovery and reconstruction with roles and responsibilities among the national and local governments clearly defined. Korea's earthquake disaster management system are including the Disaster Countermeasures Basic, but when the 9.12 earthquake occurred, problems such as insufficient early response, study on the earthquake lack were revealed. This study conducted a field survey and analyzed coping process after Po Hang earthquake. Therefore, this study have found that Disaster Management Headquarters are operated rapidly. They are coped with urgent safety inspection for damage facilities and soil liquefaction with advanced equipment. And The headquarters interviewed with victims. So they found out What the victims needed. However, when carrying out relief activities, Research of temporary housing and allocation of donations was not rapid. Further, this study have found that earthquake specialists were lack and disaster information transfer was not working. This study will be utilized as fundamental data in planning disaster management system after an earthquake.

Earthquake risk assessment of underground railway station by fragility analysis based on numerical simulation

  • Kwon, Sun Yong;Yoo, Mintaek;Hong, Seongwon
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.143-152
    • /
    • 2020
  • Korean society experienced successive earthquakes exceeding 5.0 magnitude in the past three years resulting in an increasing concern about earthquake stability of urban infrastructures. This study focuses on the significant aspects of earthquake risk assessment for the cut-and-cover underground railway station based on two-dimensional dynamic numerical analysis. Presented are features from a case study performed for the railway station in Seoul, South Korea. The PLAXIS2D was employed for numerical simulation and input of the earthquake ground motion was chosen from Pohang earthquake records (M5.4). The paper shows key aspects of earthquake risk for soil-structure system varying important parameters including embedded depth, supported ground information, and applied seismicity level, and then draws several meaningful conclusions from the analysis results such as seismic risk assessment.

The study of Safety education, safe experience for students to develop research simulreyiteo (안전체험 시뮬레이터 개발에 관한 연구)

  • Kim, Tae-hwan
    • Journal of the Society of Disaster Information
    • /
    • v.6 no.1
    • /
    • pp.46-59
    • /
    • 2010
  • In this study, the safety training of comparative analysis of the realities of Korea's safety training and international experience and practical training for the safety experience of a virtual reality simulator, the development of safe conduct as a controlled motion simulator system, image H / W and the control system works, sound effects H / W and the control system works, 4D special effects (smoke, heat, wind, vibration) and a control system integration, mission control system for the selection and evaluation of the proposal, and safety training on Game S / W of development as we have never experienced an earthquake action plan and evacuate to escape the power of experience and the experience of an earthquake (vibration + video), Also the collapse and a fire escape on the experience of following second disaster, the building collapsed during an escape experience in the field, in case of fire According to the initial fire suppression and fire extinguisher usage experience - experience of smoke and heat to escape in, Moreover, the Daegu subway fire in public places such as subway and evacuated to escape the experience, considering the suggested Simulator.

Analysis of behavior a River Levee based on the Earthquake Scenario (지진 시나리오 기반 하천 제방의 거동 변화 분석)

  • Kim, Jin-Man;Jin, Yoon-Hwa;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.481-487
    • /
    • 2020
  • This study examined the behavior change of river levees during an earthquake by numerical analysis. Unlike conventional research using artificial earthquake waves, earthquake analysis was performed using real earthquake waves. The behavior of a river levee before and after an earthquake was compared and analyzed quantitatively. Studies show that the river levee has a safety factor of approximately 28.5% due to an earthquake. On the other hand, the minimum standard safety factor is satisfied. Vertical effective stress has decreased by 81.8% due to excess pore-water pressure generated by the earthquake. In addition, liquefaction occurs in most of the foundation soil. An examination of the stress-displacement behavior due to the earthquake revealed a large amount of settlement in the backfill layer. Most of the foundation soil yielded. Therefore, the target river levee is quite vulnerable to earthquakes. Through the results of this study, the necessity of refreshing the seismic design standards for river levees is required. This study can be used as basic data for estimating the approximate damage level and vulnerable areas.

Estimation of the Isolator Displacement for the Performance Based Design of Nuclear Power Plants (원전 적용을 위한 면진장치의 성능기반 설계 변위 추정)

  • Kim, Jung Han;Choi, In-Kil;Kim, Min Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.291-299
    • /
    • 2014
  • There has been an increasing demand for introducing a base isolation system to secure the seismic safety of a nuclear power plant. However, the design criteria and the safety assessment methodology of a base isolated nuclear facility are still being developed. A performance based design concept for the base isolation system needs to be added to the general seismic design procedures. For the base isolation system, the displacement responses of isolators excited by the extended design basis earthquake are important as well as the design displacement. The possible displacement response by the extended design basis earthquake should be limited less than the failure displacement of the isolator. The failure of isolators were investigated by an experimental test to define the ultimate strain level of rubber bearings. The uncertainty analysis, considering the variations of the mechanical properties of isolators and input ground motions, was performed to estimate the probabilistic distribution of the isolator displacement. The relationship of the displacement response by each ground motion level was compared in view of a period elongation and a reduction of damping. Finally, several examples of isolator parameters are calculated and the considerations for an acceptable isolation design is discussed.

Necessity of management for minor earthquake to improve public acceptance of nuclear energy in South Korea

  • Choi, Hyun-Tae;Kim, Tae-Ryong
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.494-503
    • /
    • 2018
  • As public acceptance of nuclear energy in Korea worsens due to the Fukushima accident and the earthquakes that occurred in the Gyeongju area near the Wolsong nuclear power plant (NPP), estimating the effects of earthquakes has become more essential for the nuclear industry. Currently, most countermeasures against earthquakes are limited to large-scale disasters. Minor-scale earthquakes used to be ignored. Even though people do not feel the shaking due to minor earthquakes and minor earthquakes incur little damage to NPPs, they can change the environmental conditions, for instance, underground water level and the conductivity of the groundwater. This study conducted a questionnaire survey of residents living in the vicinity of an NPP to determine their perception and acceptance of plant safety against minor earthquakes. The results show that the residents feel earthquakes at levels that can be felt by people, but incur little damage to NPPs, as minor earthquakes (magnitude of 2.0-3.9) and set this level as a standard for countermeasures. Even if a minor earthquake has little impact on the safety of an NPP, there is still a possibility that public opinion will get worse. This study provides analysis results about problems of earthquake measures of Korean NPPs and specific things that can bring about an effect of deterioration of public acceptance. Based on these data, this article suggests that active management of minor earthquakes is necessary for the sustainability of nuclear energy.