• 제목/요약/키워드: earthquake resistant behavior

검색결과 105건 처리시간 0.024초

비선형 유효응력해석을 이용한 1995 Kobe 지진시 케이슨 안벽의 거동 평가 (Evaluation of Caisson Quay Wall Behavior during the 1995 Kobe Earthquake by Nonlinear Effective Stress Analysis)

  • 이진선;노경도
    • 한국지진공학회논문집
    • /
    • 제20권6호
    • /
    • pp.401-412
    • /
    • 2016
  • On Tuesday, January 17, 1995, an earthquake of magnitude 7.2 struck the Port of Kobe. In effect, the port was practically destroyed. After a hazard investigation, researchers reached a consensus to adopt a performance-based design in port and harbor structures in Japan. A residual displacement of geotechnical structures after an earthquake is one of the most important engineering demands in performance-based earthquake-resistant design. Thus, it is essential to provide reliable responses of geotechnical structures after an earthquake through various techniques. Today, a nonlinear explicit response history analysis(NERHA) of geotechnical structures is the most efficient way to achieve this goal. However, verification of the effective stress analysis, including post liquefaction behavior, is difficult to perform at a laboratory scale. This study aims to rigorously verify the NERHA by using well-defined field measurements, existing numerical tools, and constitutive models. The man-made, Port Island, in Kobe provides intensive hazard investigation data, strong motion records of 1995 Kobe earthquake, and sufficient engineering parameters of the soil. Two dimensional numerical analysis was conducted on the caisson quay wall section at Port Island subjected to the 1995 Kobe earthquake. The analysis result matches very well with the hazard investigation data. The NERHA procedure presented in this paper can be used in further studies to explain and examine the effects of other factors on the seismic behavior of gravity quay walls in liquefiable soil areas.

Experimental study on cyclically-damaged steel-concrete composite joints subjected to fire

  • Ye, Zhongnan;Jiang, Shouchao;Heidarpour, Amin;Li, Yingchao;Li, Guoqiang
    • Steel and Composite Structures
    • /
    • 제30권4호
    • /
    • pp.351-364
    • /
    • 2019
  • Earthquake and fire are both severe disasters for building structures. Since earthquake-induced damage will weaken the structure and reduce its fire endurance, it is important to investigate the behavior of structure subjected to post-earthquake fire. In this paper, steel-concrete composite beam-to-column joints were tested under fire with pre-damage caused by cyclic loads. Beforehand, three control specimens with no pre-damage were tested to capture the static, cyclic and fire-resistant performance of intact joints. Experimental data including strain, deflection and temperature recorded at several points are presented and analyzed to quantify the influence of cyclic damage on fire resistance. It is indicated that the fire endurance of damaged joints decreased with the increase of damage level, mainly due to faster heating-up rate after cyclic damage. However, cracks induced by cyclic loading in concrete are found to mitigate the concrete spalling at elevated temperatures. Moreover, the relationship between fire resistance and damage degree is revealed from experimental results, which can be applied in fire safety design and is worthwhile for further research.

콘크리트충전 강합성 교각의 구조적 거동에 관한 연구 (The Study on the Structural Behavior of Concrete-filled Composite Piers)

  • 김유경
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.151-158
    • /
    • 2000
  • In this paper, It is presented that concrete-filled composite piers have large energy-absorption capacity and high strength and stiffness on account of mutual confinement between the steel plate and filled-in concrete. Concrete-filled composite columns were tested to failure under axial compression and cyclic lateral loading. Displacement ductility index obtained by using the load-displacement relation has been increased with the increment of filled-in concrete length, while it has been decreased according to the incrementation of width-thickness ratio, slenderness ratio and the number of loading cycles. Structural behavior and ductility index estimated for the seismic design showed that composite piers could be used as a very efficient earthquake-resistant structural member. The response modification factor could be re-evaluated for concrete-filled composite piers.

  • PDF

진동대시험을 이용한 DCM공법에 따른 방파제의 동적거동 분석 (Analysis on the Dynamic Behavior of Breakwater with the DCM Method Using the Shaking Table Test)

  • 김영준;박인준
    • 한국지반환경공학회 논문집
    • /
    • 제23권5호
    • /
    • pp.25-32
    • /
    • 2022
  • 최근 우리나라에 리히터 규모 5.0 이상의 지진발생 2건과 규모가 낮은 지진발생이 많아짐에 따라 지진피해가 늘어나면서 내진설계에 대한 많은 연구와 관심이 높아지고 있으며, 그 중 최근 발생한 포항지진으로 인해 항만시설물에 대한 내진설계에도 관심이 높아졌다. 본 연구에서는 1g 진동대시험을 통하여 항만구조물 중 직립식, 경사식 방파제에 대한 지진 시 발생하는 동적거동에 대해서 실험 및 분석을 하였다. 이를 위해 사상법칙을 적용한 모델에 장주기(Hachinohe), 단주기(Ofunato), 인공지진파 총 세가지 지진파를 적용하고, 연약지반의 DCM 공법 보강 여부를 고려하여 실험하였다. 진동대시험결과를 기초로 지진 시 DCM 공법 보강 여부에 따라 직립식과 경사식 방파제의 동적거동에 대하여 가속도 및 수평·수직 변위를 분석하였다. 검토 결과 직립식 및 경사식 방파제 동적거동은 DCM 공법 보강을 한 경우에 지지력 및 강성이 높아짐에 따라 가속도의 증폭이 억제되는 경향을 나타내었다.

모멘트-연성 강구조물의 내진설계를 위한 반응수정계수의 평가 (Evaluation of Response Modification Factore for Earthquake Resistant Design of Moment-Resisting Steel Frames)

  • 송종걸
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.201-208
    • /
    • 1997
  • In most seismic codes such as the Uniform Building Code(UBC), the response modification factor(or the force reduction factor)is used to reflect the capability of a structure in dissipating energy through inelastic behavior. The response modification factor is assigned according to structural system type. Ductile systems such as special moment-resisting steel frames are assigned larger values of the response modification factor, and are consequently designed for smaller seismic design forces. Therefore, structural damage may occur during a severe earthquake. To ensure safety of the structures, the suitability of the response modification factor used in aseismic design procedures shall be evaluated. The object of this study is to develop a method for the evaluating of the response modification factor. The validity of the evaluating method has been examined for several cases of different structures and different earthquake excitations.

  • PDF

면진 테이블 시스템의 동적 특성 및 면진성능 (Dynamic Characteristics and Isolation Performance of Isolation Table System)

  • 황재승;주석준;김윤석
    • 한국지진공학회논문집
    • /
    • 제5권4호
    • /
    • pp.67-74
    • /
    • 2001
  • 지진에 대한 구조물의 건전도는 내진설계에 의하여 많이 개선된 반면, 구조물 내부의 설비 및 중요 장비등에 대한 안정성은 최근에 관심을 가지게 되었다. 특히 국보급 문화재나 소장품은 그 가치에 비하여 지진에 대한 안전성이 고려되지 않은 것은 사실이다. 본 연구에서는 지진에 의하여 발생할 수 있는 내부 기기 및 문화재의 전도, 낙하를 방지하기 위한 면진 시스템을 개발하여, 본 장치에 대한 면진성능을 진동대 실험을 통하여 검증하였다. 본 면진 테이블은 전시물의 하부에 설치되어, 바닥판의 진동이 전시대에 전달되는 것을 차단하는 격리시스템이다. 면진성능시험 결과, 면진성능이 80-90%이며 면진테이블의 최대 스트로트내에서 안정적으로 거동하는 것으로 나타났다.

  • PDF

준정적실험에 의한 섬유보강된 철근콘크리트 교각의 내진성능 평가 (Quasi-Static Test for Seismic Performance of R/C Bridge Piers Retrofitted with Glassfibers)

  • 이대형;이재형;정영수;박진영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.871-876
    • /
    • 2001
  • Recent earthquakes in California and Japan caused extensive damage to highway bridge structures. It is also thought that during probable earthquakes bridge structures in Korea could be failed due to the structural deficiencies, which were nonseismically designed and constructed before 1992. In these regards, innovative strengthening methods have been developed to repair reinforced concrete bridge columns, especially by glassfiber sheet bonding methods which are widely used today. The primary objective of this research is to investigate the seismic behavior of RC bridge columns retrofitted with composite straps and to propose pertinent guidelines of repair and rehabilitation method for earthquake resistant design procedure of RC bridges which are located in low or moderate seismicity regions. Six scaled-down concrete test specimens were made with test variables such as lap splice ratio, axial force ratio, confinement ratio, composite straps in the plastic hinge region. Pertinent design guidelines could be developed for the earthquake resistant design of RC bridge piers retrofitted with glassfibers in low or moderate seismic region.

  • PDF

Finite element modeling of the influence of FRP techniques on the seismic behavior of historical arch stone bridge

  • Mahdikhani, Mahdi;Naderi, Melika;Zekavati, Mehdi
    • Computers and Concrete
    • /
    • 제18권1호
    • /
    • pp.99-112
    • /
    • 2016
  • Since the preservation of monuments is very important to human societies, different methods are required to preserve historic structures. In this paper, 3D model of arch stone bridge at Pont Saint Martin, Aosta, Italy, was simulated by 1660 integrated separate stones using ABAQUS$^{(R)}$ software to investigate the seismic susceptibility of the bridge. The main objective of this research was to study a method of preservation of the historical stone bridge against possible earthquakes using FRP techniques. The nonlinear behavior model of materials used theory of plasticity based on Drucker-Prager yield criterion. Then, contact behavior between the block and mortar was modeled. Also, Seismosignal software was used to collect data related to 1976 Friuli Earthquake Italy, which constitutes a real seismic loading. The results show that, retrofitting of the arch stone bridge using FRP techniques decreased displacement of stones of spandrel walls, which prevents the collapse of stones.

Effects of Material Nonlinearity on Seismic Responses of Multistoried Buildings with Shear Walls and Bracing Systems

  • Islam, Md. Rajibul;Chakraborty, Sudipta;Kim, Dookie
    • Architectural research
    • /
    • 제24권3호
    • /
    • pp.75-84
    • /
    • 2022
  • Scads of earthquake-resistant systems are being invented around the globe to ensure structural resistance against the lateral forces induced by earthquake loadings considering structural safety, efficiency, and economic aspects. Shear wall and Bracing systems are proved to be two of the most viable solutions for seismic strengthening of structures. In the present study, three numerical models of a G+10 storied building are developed in commercial building analysis software considering shear wall and bracing systems for earthquake resistance. Material nonlinearity is introduced by using plastic hinges. Analyses are performed utilizing two dynamic methods: Response Spectrum analysis and nonlinear Time-history analysis using Kobe and Loma Prieta earthquake data and results are compared to observe the nonlinear behavior of structures. The outcomes exposed that a significant increase in the seismic responses occurs due to the nonlinearity in the building systems. It was also found that building with shear wall exhibits maximum resistance and minimum nonlinearity when subjected to dynamic loadings.

Seismic behavior of steel column-base-connection equipped by NiTi shape memory alloy

  • Jamalpour, Reza;Nekooei, Masoud;Moghadam, Abdolreza Sarvghad
    • Structural Engineering and Mechanics
    • /
    • 제64권1호
    • /
    • pp.109-120
    • /
    • 2017
  • The behavior of moment resistant steel structures depends on both the beam-column connections and columns foundations connections. Obviously, if the connections can meet the adequate ductility and resistance against lateral loads, the seismic capacity of these structures will be linked practically to the performance of these connections. The shape memory alloys (SMAs) have been most recently used as a means of energy dissipation in buildings. The main approach adopted by researchers in the use of such alloys is firstly bracing, and secondly connecting the beams to columns. Additionally, the behavior of these alloys is modeled in software applications rarely involving equivalent torsional springs and column-foundation connections. This paper attempts to introduce the shape memory alloys and their applications in steel structural connections, proposing a new steel column-foundation connection, not merely a theoretical model but practically a realistic and applicable model in structures. Moreover, it entails the same functionality as macro modeling software based on real behavior, which can use different materials to establish a connection between the columns and foundations. In this paper, the suggested steel column-foundation connection was introduced. Moreover, exploring the seismic dynamic behavior under cyclic loading protocols and the famous earthquake records with different materials such as steel and interconnection equipment by superelastic shape memory alloys have been investigated. Then, the results were compared to demonstrate that such connections are ideal against the seismic behavior and energy dissipation.