• Title/Summary/Keyword: earthquake resistant behavior

Search Result 105, Processing Time 0.022 seconds

Behavior Factor of a Steel Box Bridge with Single Column Piers (단주교각 강박스교량의 거동계수)

  • 박준봉;김종수;국승규
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.228-235
    • /
    • 2002
  • As the response spectrum method generally used in the earthquake resistant design is a linear method, the nonlinear behavior of a structure is to be reflected with a specific factor. Such factors are provided in the "Design Criteria for Roadwaybridges"as response modification factors and in the Eurocode 8, Part 2 as behavior factors. In this study a 5-span steel box bridge with single column piers is selected and the behavior factor is determined. The linear time history analyses are carried out with a simple linear model, where the nonlinear behavior of piers leading to the ductile failure mechanism is considered as predetermined characteristic curves.

  • PDF

Progressive Collapse-Resistant Rotational Capacity Evaluation of WUF-W Connection by Fracture Index Analysis (파괴지수분석에 의한 WUF-W 접합부의 연쇄붕괴저항 회전능력평가)

  • Kim, Seonwoong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.353-360
    • /
    • 2018
  • This paper is to investigate the micro-behavior of the double-span beams with WUF-W seismic connection under combined axial tension and moment and to propose the rational rotational capacity of it for progressive collapse-resistant analysis and design addressing the stress and strain transfer mechanism. To this end, the behavior of the double-span beams under the column missing event is first investigated using the advanced nonlinear finite element analysis. The characteristics of fracture indices of double-span beams with WUF-W connection under combined axial tension and flexural moment are addressed and then proposed the rational rotational capacity as the basic datum for the progressive collapse-resistant design and analysis. The distribution of fracture indices related to stress and strain for the double-span beams is investigated based on a material and geometric nonlinear finite element analysis. Furthermore, the micro-behavior for earthquake and progressive collapse is explicitly different.

Improvement and Evaluation of Earthquake Resistant Retrofit Techiques for Remodeling of Structural Performance in Existing Reinforced Concrete Frames (기존 철근콘크리트 골조의 리모델링을 위한 내진보강 기술의 구조성능 평가 및 개선)

  • Ha, Gee-Joo;Shin, Jong-Hack;Lee, Sang-Mog
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.175-182
    • /
    • 2001
  • Five reinforced concrete frames were constructed and tested to study the structural performance of retrofitting effect reinforced concrete frame during and load revesals simultaneously. All specimens were modeling in one-third scale size. Experimental research was carried out to develop and evaluate the hysteretic behavior of reinforced concrete frame designed by high performance techniques, using carbon fiber plate, ALC panel, steel plate system with or without stiffener. Experimental programs wore carried to evaluate the structural performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. Specimens(RFCP, RFAR, RFSR, RFSR-S), designed by the improvement of earthquake-resistant performance, were attained more load-carrying capacity, energy dissipation capacity, and stable hysteretic behavior.

  • PDF

Development of Now Technique for Earthquake-Resistant Retrofit in Reinforced Concrete Frame (철근콘크리트 골조의 내진보강을 위한 신기술 개발)

  • 하기주;신종학;최민권;조용태;조용태;이상목;이영범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.69-74
    • /
    • 2000
  • In this dissertation, experimental research was carried out to study the hysteretic behavior of reinforced concrete frame designed by high performance techniques, using carbon fiber plate, diagonal bracing system with or without steel frame. Experimental programs were carried to evaluate the structural performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. Specimens(RFCP, RFXB, RFXB-F), designed by the improvement of earthquake-resistant performance, were attained more load-carrying load-carrying capacity stable hysteretic behavior.

  • PDF

Pier Stiffness and Bridge Collapse Mechanism (교각 강성과 교량의 붕괴기구)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.2
    • /
    • pp.187-192
    • /
    • 2016
  • While structures are designed within elastic range by other designs, plastic behavior of structures should be verified and controlled in order to prevent structural collapse by the earthquake resistant design. No Collapse Requirement for typical bridges is to avoid falling down of superstructure by way of plastic behavior of certain structural elements and to operate emergency vehicles after earthquake. Such plastic behavior is restricted to connections or pier columns and appropriate measures are required for each case. Earthquake Resistant Design part of Roadway Bridge Design Code provides design processes for Ductile Collapse Mechanism by forming plastic hinges at pier columns. Also for bridges with reinforced concrete piers ductility-based design processes are provided as an appendix constructing Brittle Collapse Mechanism with connection yielding. In this study, a typical bridge with steel bearing connections and reinforced concrete piers is selected and No Collapse Design procedure considering both Ductile and Brittle Collapse Mechanism is proposed together with revisions required for the Earthquake Resistant Design part.

Seismic Behavior of Inverted T-type Wall under Earthquake Part I : Verification of the Numerical Modeling Techniques (역T형 옹벽의 지진시 거동특성 Part I : 수치해석 모델링 기법의 검증)

  • Lee, Jin-sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Permanent deformation plays a key role in performance based earthquake resistant design. In order to estimate permanent deformation after earthquake, it is essential to secure reliable response history analysis(RHA) as well as earthquake scenario. This study focuses on permanent deformation of an inverted T-type wall under earthquake. The study is composed of two separate parts. The first one is on the verification of RHA and the second one is on an effect of input earthquake motion. The former is discussed in this paper and the latter in the companion paper. The verification is conducted via geotechnical dynamic centrifuge test in prototype scale. Response of wall stem, ground motions behind the wall obtained from RHA matched pretty well with physical test performed under centrifugal acceleration of 50g. The rigorously verified RHA is used for parametric study to investigate an effect of input earthquake motion selection in the companion paper.

Structural redundancy of 3D RC frames under seismic excitations

  • Massumi, Ali;Mohammadi, Ramin
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.15-36
    • /
    • 2016
  • The components of the seismic behavior factor of RC frames are expected to change as structural redundancy increases. Most researches indicate that increasing redundancy is desirable in response to stochastic events such as earthquake loading. The present paper investigated the effect of redundancy on a fixed plan for seismic behavior factor components and the nonlinear behavior of RC frames. The 3D RC moment resistant frames with equal lateral resistance were designed to examine the role of redundancy in earthquake-resistant design and to distinguish it from total overstrength capacity. The seismic behavior factor and dynamic behavior of structures under natural strong ground motions were numerically evaluated as the judging criteria for structural seismic behavior. The results indicate that increasing redundancy alone in a fixed plan cannot be defined as a criterion for improving the structural seismic behavior.

New Technique on the Improvement of Earthquake-Resistant Performance for the Retrofitting of Existing Reinforced Concrete Beam-Column Joints (철근콘크리트 보-기둥 접합부의 내진성능 개선 보강 신기술)

  • 하기주
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.73-81
    • /
    • 2004
  • In this study, experimental research was carried out to improve earthquake-resistant performance for the retrofitting of reinforced concrete beam-column joints using carbon fiber materials in existing reinforced concrete building. Six reinforced concrete beam-column joints were constructed and tested to evaluate the retrofitting effect of test variables, such as the retrofitting materials and retrofitting region(plastic hinge, beam-column joint) under load reversals. Test results show that retrofitting specimen(RPC-CP2, RPC-CR, RJC-CP, RJC-CR), using new materials(carbon fiber plate, carbon fiber rod and carbon fiber sheet), designed by the improvement of earthquake-resistant performance and ductility, attained more load-carrying capacity and stable hysteretic behavior.

A Study of influence factors on the bridge seismic behavior (교량의 지진거동에 미치는 영향인자에 관한 연구)

  • Choi, Jong-Man;Kook, Seung-Kyu;Kim, Jun-Bum;Jung, Dong-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.372-379
    • /
    • 2005
  • The earthquake resistant design concept allows the nonlinear behavior of structures under the design earthquake. Therefore the response spectrum method provided in most codes introduces the response modification factors to consider the nonlinear behavior in the design process. For bridges, the response modification factors are given according to the ductility as well as the redundancy of piers. In this study, among influence factors on the nonlinear seismic behavior, the randomness of artificial accelerograms simulated with different durations, the pier ductility represented by the inelastic behavior characteristic curve and the regularity represented by pier heights are selected. The influence of such factor on the seismic behavior is investigated by comparing response modification factors calculated with the nonlinear time step analysis.

  • PDF

Space Safety Planning in Apartment House at Earthquake - Based on Human Behavior in Shindo 7 Area at the 1995 Hyogo-Ken Nanb Earthquake (지진발생시 공동주택의 공간안전계획에 관한 연구 -1995년 효고현 남부지진의 진도 7지역의 인간행동분석을 통하여-)

  • 김병곤
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.81-88
    • /
    • 2000
  • This paper based on a survey of the 1995 Hyogo-Ken Nanbu Earthquake analyzes human behavior by the house pattern through the correspondence analysis in an area of Shindo 7: earthquake with an intensity of 7 on the Japanese scale. According to the analysis the following proposals are shown as a space safety planning: First : To establish the space allotment based on which the role behavior among family members are smoothly executed, . Second In the apartment house it is important to install a common space or a "Helping Neighbot" -route to the adjoining dwelling unit which is safe for residents' activities and effective for the improvement of the earthquake-resistant structure of the building. building.

  • PDF