• Title/Summary/Keyword: earthquake prediction

Search Result 292, Processing Time 0.026 seconds

Predictions of curvature ductility factor of doubly reinforced concrete beams with high strength materials

  • Lee, Hyung-Joon
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.831-850
    • /
    • 2013
  • The high strength materials have been more widely used in reinforced concrete structures because of the benefits of the mechanical and durable properties. Generally, it is known that the ductility decreases with an increase in the strength of the materials. In the design of a reinforced concrete beam, both the flexural strength and ductility need to be considered. Especially, when a reinforced concrete structure may be subjected an earthquake, the members need to have a sufficient ductility. So, each design code has specified to provide a consistent level of minimum flexural ductility in seismic design of concrete structures. Therefore, it is necessary to assess accurately the ductility of the beam sections with high strength materials in order to ensure the ductility requirement in design. In this study, the effects of concrete strength, yield strength of reinforcement steel and amount of reinforcement including compression reinforcement on the complete moment-curvature behavior and the curvature ductility factor of doubly reinforcement concrete beam sections have been evaluated and a newly prediction formula for curvature ductility factor of doubly RC beam sections has been developed considering the stress of compression reinforcement at ultimate state. Based on the numerical analysis results, the proposed predictions for the curvature ductility factor are verified by comparisons with other prediction formulas. The proposed formula offers fairly accurate and consistent predictions for curvature ductility factor of doubly reinforced concrete beam sections.

Development of Road Surface Temperature Prediction Model using the Unified Model output (UM-Road) (UM 자료를 이용한 노면온도예측모델(UM-Road)의 개발)

  • Park, Moon-Soo;Joo, Seung Jin;Son, Young Tae
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.471-479
    • /
    • 2014
  • A road surface temperature prediction model (UM-Road) using input data of the Unified Model (UM) output and road physical properties is developed and verified with the use of the observed data at road weather information system. The UM outputs of air temperature, relative humidity, wind speed, downward shortwave radiation, net longwave radiation, precipitation and the road properties such as slope angles, albedo, thermal conductivity, heat capacity at maximum 7 depth are used. The net radiation is computed by a surface radiation energy balance, the ground heat flux at surface is estimated by a surface energy balance based on the Monin-Obukhov similarity, the ground heat transfer process is applied to predict the road surface temperature. If the observed road surface temperature exists, the simulated road surface temperature is corrected by mean bias during the last 24 hours. The developed UM-Road is verified using the observed data at road side for the period from 21 to 31 March 2013. It is found that the UM-Road simulates the diurnal trend and peak values of road surface temperature very well and the 50% (90%) of temperature difference lies within ${\pm}1.5^{\circ}C$ (${\pm}2.5^{\circ}C$) except for precipitation case.

An intelligent semi-active isolation system based on ground motion characteristic prediction

  • Lin, Tzu-Kang;Lu, Lyan-Ywan;Hsiao, Chia-En;Lee, Dong-You
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.53-64
    • /
    • 2022
  • This study proposes an intelligent semi-active isolation system combining a variable-stiffness control device and ground motion characteristic prediction. To determine the optimal control parameter in real-time, a genetic algorithm (GA)-fuzzy control law was developed in this study. Data on various types of ground motions were collected, and the ground motion characteristics were quantified to derive a near-fault (NF) characteristic ratio by employing an on-site earthquake early warning system. On the basis of the peak ground acceleration (PGA) and the derived NF ratio, a fuzzy inference system (FIS) was developed. The control parameters were optimized using a GA. To support continuity under near-fault and far-field ground motions, the optimal control parameter was linked with the predicted PGA and NF ratio through the FIS. The GA-fuzzy law was then compared with other control laws to verify its effectiveness. The results revealed that the GA-fuzzy control law could reliably predict different ground motion characteristics for real-time control because of the high sensitivity of its control parameter to the ground motion characteristics. Even under near-fault and far-field ground motions, the GA-fuzzy control law outperformed the FPEEA control law in terms of controlling the isolation layer displacement and the superstructure acceleration.

Three-dimensional geostatistical modeling of subsurface stratification and SPT-N Value at dam site in South Korea

  • Mingi Kim;Choong-Ki Chung;Joung-Woo Han;Han-Saem Kim
    • Geomechanics and Engineering
    • /
    • v.34 no.1
    • /
    • pp.29-41
    • /
    • 2023
  • The 3D geospatial modeling of geotechnical information can aid in understanding the geotechnical characteristic values of the continuous subsurface at construction sites. In this study, a geostatistical optimization model for the three-dimensional (3D) mapping of subsurface stratification and the SPT-N value based on a trial-and-error rule was developed and applied to a dam emergency spillway site in South Korea. Geospatial database development for a geotechnical investigation, reconstitution of the target grid volume, and detection of outliers in the borehole dataset were implemented prior to the 3D modeling. For the site-specific subsurface stratification of the engineering geo-layer, we developed an integration method for the borehole and geophysical survey datasets based on the geostatistical optimization procedure of ordinary kriging and sequential Gaussian simulation (SGS) by comparing their cross-validation-based prediction residuals. We also developed an optimization technique based on SGS for estimating the 3D geometry of the SPT-N value. This method involves quantitatively testing the reliability of SGS and selecting the realizations with a high estimation accuracy. Boring tests were performed for validation, and the proposed method yielded more accurate prediction results and reproduced the spatial distribution of geotechnical information more effectively than the conventional geostatistical approach.

Application of the JMA instrumental intensity in Korea (일본 기상청 계측진도의 국내 활용)

  • Kim, Hye-Lim;Kim, Sung-Kyun;Choi, Kang-Ryong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.49-56
    • /
    • 2010
  • In general, the seismic intensity deduced from instrumental data has been evaluated from the empirical relation between the intensity and the PGA. From the point of view that the degree of earthquake damage is more closely associated with the seismic intensity than with the observed PGA, JMA developed the instrumental seismic intensity (JMA instrumental intensity) meter that estimate the real-time seismic intensity from the observed strong motion data to obtain a more correct estimate of earthquake damage. The purpose of the present study is to propose a practical application of the JMA instrumental intensity in Korea. Since the occurrence of strong earthquakes is scarce in the Korean Peninsula, there is an insufficiency of strong motion data. As a result, strong motion data were synthesized by a stochastic procedure to satisfy the characteristics of a seismic source and crustal attenuation of the Peninsula. Six engineering ground motion parameters, including the JMA instrumental intensity, were determined from the synthesized strong motion data. The empirical relations between the ground motion parameters were then analyzed. Cluster analysis to classify the parameters into groups was also performed. The result showed that the JMA acceleration ($a_0$) could be classified into similar group with the spectrum intensity and the relatively distant group with the CAV (Cumulative Absolute Velocity). It is thought that the $a_0$ or JMA intensity can be used as an alternative criterion in the evaluation of seismic damage. On the other hand, attenuation relation equations for PGA and $a_0$ to be used in the prediction of seismic hazard were derived as functions of the moment magnitude and hypocentral distance.

Prediction of seismic displacements in gravity retaining walls based on limit analysis approach

  • Mojallal, Mohammad;Ghanbari, Ali
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.247-267
    • /
    • 2012
  • Calculating the displacements of retaining walls under seismic loads is a crucial part in optimum design of these structures and unfortunately the techniques based on active seismic pressure are not sufficient alone for an appropriate design of the wall. Using limit analysis concepts, the seismic displacements of retaining walls are studied in present research. In this regard, applying limit analysis method and upper bound theorem, a new procedure is proposed for calculating the yield acceleration, critical angle of failure wedge, and permanent displacements of retaining walls in seismic conditions for two failure mechanisms, namely sliding and sliding-rotational modes. Also, the effect of internal friction angle of soil, the friction angle between wall and soil, maximum acceleration of the earthquake and height of the wall all in the magnitude of seismic displacements has been investigated by the suggested method. Two sets of ground acceleration records related to near-field and far-field domains are employed in analyses and eventually the results obtained from the suggested method are compared with those from other techniques.

Effect of base isolation on the seismic response of multi-column bridges

  • Saiidi, M.;Maragakis, E.;Griffin, G.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.4
    • /
    • pp.411-419
    • /
    • 1999
  • A nonlinear model for time-step analysis of bridges subjected to two orthogonal horizontal components of earthquake motions was developed. The focus of the study was on elastomeric isolators with or without lead cores. The hysteretic behavior of the isolators, the columns, abutments, and shear keys was taken into account. The nonlinear analysis showed that, contrary to linear theory prediction, the use of isolators does not necessarily increase the displacement of the superstructure. Furthermore, it was shown that properly designed isolators can reduce the ductility demand in RC bridge columns substantially.

A neural-attenuation model before Mexican extreme events

  • Garcia, Silvia R.;Alcantara, Leonardo
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.591-598
    • /
    • 2019
  • The most recent shaking experiences have demonstrated that the predictions of the seismic models are not always in agreement with the registered responses, especially in the face of extreme earthquakes. Records collected from 1960 to 2011 at a rock-like site are used to develop a neural network that permits to estimate peak ground accelerations via the magnitude, the focal depth, the site-source distance and a seismogenic zone. The neural model is applied to the 8th and 19th September 2017 events that hit Mexican territory and the obtained results show that the network is flexible enough to work appropriately to various conditions of intensity and sites-sources with remarkably predictive capacity. The neural-attenuation curves are compared with those obtained from Ground Motion Prediction Equations and their performance is assessed for events, in addition to the devastating Mexican events, from Japan, Taiwan, Chile and USA.

Damage Prediction of Reinforced Concrete Structures due to Ground Motion (지반진동으로 인한 R/C 구조물의 손상에 관한 연구)

  • Rhim, Hong-Chul;Kim, Ji-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.195-202
    • /
    • 2002
  • Urbanization and development of industry makes people concerned about quality of circumstances. Problems of vibration are on the rise. Vibration makes inhabitants feel unpleasant and involves structural damage. The purpose of this study is to assess damage of reinforced concrete structures due to ground motions as the parameters of frequency, duration time and aspect ratio of structures are changed. Ground motions were modeled as sine waves. To compare sine waves with real ground motions, two cases are selected; one is blast loading case and the other is earthquake loading. It was intended to provide means to assess R/C structure damage due to ground motions.

Performance Analysis of Building Damage Prediction Models using Earthquake Data (지진 데이터를 이용한 건물 피해 예측 모델의 성능 분석)

  • Songhwa Chae;Yujin Lim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.547-548
    • /
    • 2023
  • 내진 설계가 되어있지 않은 건물의 경우, 지진으로 인해 건물 붕괴 가능성이 높아지며 이로 인해 많은 인명 피해가 발생할 수 있다. 지진으로 인한 건물의 피해를 예측하고 이를 기반으로 취약점을 보완한다면 인명 피해를 줄일 수 있으므로 건물 피해 예측 모델에 대한 연구가 필요하다. 본 논문에서는 2015 년 네팔 대지진으로 인해 손상된 건물 데이터를 활용하여 Random Forest 와 Extreme Gradient Boosting 기계학습 분류 알고리즘을 사용하여 지진 피해 예측 모델의 정확도를 비교하였다.