• Title/Summary/Keyword: earthquake observation

Search Result 155, Processing Time 0.027 seconds

Seismic Research Network in KIGAM (한국자원연구소 지진 네트워크)

  • 이희일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.49-56
    • /
    • 2000
  • Instrumental observation of earth quakes in KIGAM was first attempted in the earty 1980`s by using 6 portable seismographs in the vicinity of Yang-San Faults. Now twenty-four permanent stations, which are equipped with short-period or broad-band seismometer, are included in seismic research network in KIGAM, including KSRS array station in Wonju which is consisted of 26 bore-hole stations. The seismic network of KIGAM is also linked to that of KEPRI(Korea Electric Power Research Institute)which is consisted of eight stations installed within and around the nuclear power plants. Owing to real-time data acquisition by telemetry, it became feasible to automatically locate hypocenters of the local events within fifteen minutes by computer data processing system, named KEMS(Korea Earthquake Monitoring System). Results of the hypocenter determination, together with observational data, are compiled and stored in the data base system. And they are published via web site whose URL is http://quake.kigam.re.kr KIGAM is also running t재 permanent geomagnetic stations installed in Daejun and Kyungju. The observed geomagnetic data are transmitted to Earthquake Research Centre in KIGAM by seismic network and compiled for the purpose of earthquake prediction research and other basic geophysical research.

  • PDF

Seismic Response Analysis of Nuclear Power Plant Structures and Equipment due to the Pohang Earthquake (포항지진에 대한 원자력발전소 구조물 및 기기의 지진응답분석)

  • Eem, Seung-Hyun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.113-119
    • /
    • 2018
  • The probabilistic seismic safety assessment is one of the methodology to evaluate the seismic safety of the nuclear power plants. The site characteristics of the nuclear power plant should be reflected when evaluating the seismic safety of the nuclear power plant. The Korea seismic characteristics are strong in high frequency region and may be different from NRC Regulatory Guide 1.60, which is the design spectrum of nuclear power plants. In this study, seismic response of a nuclear power plant structure by Pohang earthquake (2017.11.15. (KST)) is investigated. The Pohang earthquake measured at the Cheongsong seismic observation station (CHS) is scaled to the peak ground acceleration (PGA) of 0.2 g and the seismic acceleration time history curve corresponding to the design spectrum is created. A nuclear power plant of the containment building and the auxiliary buildings are modeled using OPENSEES to analyze the seismic response of the Pohang earthquake. The seismic behavior of the nuclear power plant due to the Pohang earthquake is investigated. And the seismic performances of the equipment of a nuclear power plant are evaluated by the HCLPF. As a result, the seismic safety evaluation of nuclear power plants should be evaluated based on site-specific characteristics of nuclear power plants.

Current Status and Future Direction of the NIMS/KMA Argo Program (국립기상과학원 Argo 사업의 현황 및 추진 방향)

  • Baek-Jo Kim;Hyeong-Jun Jo;KiRyong Kang;Chul-Kyu Lee
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.561-570
    • /
    • 2023
  • In order to improve the predictability of marine high-impacts weather such as typhoon and high waves, the marine observation network is an essential because it could be rapidly changed by strong air-sea interaction. In this regard, the National Institute of Meteorological Sciences, Korea Meteorological Administration (NIMS/KMA) has promoted the Argo float observation program since 2001 to participate in the International Argo program. In this study, current status and future direction of the NIMS/KMA Argo program are presented through the internal meeting and external expert forum. To date, a total of 264 Argo floats have been deployed into the offshore around the Korean Peninsula and the Northwestern Pacific Ocean. The real-time and delayed modes quality control (QC) system of Argo data was developed, and an official regional data assembling center (call-sign 'KM') was run. In 2002, the Argo homepage was established for the systematic management and dissemination of Argo data for domestic and international users. The future goal of the NIMS/KMA Argo program is to improve response to the marine high-impacts weather through a marine environment monitoring and observing system. The promotion strategy for this is divided into four areas: strengthening policy communication, developing observation strategies, promoting utilization research, and activating international cooperation.

Earthquake Design and Reinforcement Countermeasure for Transmission Line and Substation (송변전설비의 내진설계 및 보강대책)

  • Min, Byeong-Wook;Kim, Kang-Kyu;Han, Byung-Jun;Park, In-Joung;Kim, Young-Dal
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.432-433
    • /
    • 2011
  • Even though Korea has very low possibility that a big earthquake occurs like in Japan, China, Taiwan and United States of America, because it is located on the interior of Eurasian Plate, the earthquake which was struck northeast Japan in March 11th, 2011 gave a big shock to Korean. And small-medium earthquakes have been observed 922 times in Korea since 1978 when an earthquake hit Hong-seong and a seismographic station started observation. Moreover, the number of quakes has been on the increase. In case a big earthquake occurs like in northeast Japan, it would be a terrible disaster for Korean power utilities and brings mega effects on Korean society and economy. So it is necessary to apply anti-earthquake design for new power facilities and to reinforce existing facilities. Therefore, this paper would present anti-earthquake design for transmission line and substation and reinforcement measures for existing facilities.

  • PDF

Earthquake Observation through Groundwater Monitoring: A case of M4.9 Odaesan Earthquake (지하수 모니터링을 통한 지진 감시 가능성: 중규모(M4.9) 오대산 지진의 관측)

  • Lee, Hyun-A;Kim, Min-Hyung;Hong, Tae-Kyung;Woo, Nam-C.
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.3
    • /
    • pp.38-47
    • /
    • 2011
  • Groundwater monitoring data from the National Groundwater Monitoring Stations, a total of 320 stations, were analyzed to identify the response of water level and quality to the Odaesan earthquake (M4.9) occurred in January 2007. Among the total of eight stations responded to the earthquake, five wells showed water-level decline, and in three wells, water level rose. In terms of recovery, water levels in four stations had recovered to the original level in five days, but not in the rest four wells. The magnitude of water-level change shows weak relations to the distance between the earthquake epicenter and the groundwater monitoring station. However, the relations to the transmissivities of monitored aquifer in the station with the groundwater change were not significant. To implement the earthquake monitoring system through the groundwater monitoring network, we still need to accumulate the long-term monitoring data and geostatistically analyze those with hydrogeological and tectonic factors.

The Modulation of Currents and Waves near the Korean Marginal seas computed by using MM5/KMA and WAVEWATHC-III model

  • Seo, Jang-Won;Chang, You-Soon
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.37-42
    • /
    • 2003
  • We have analyzed the characteristics of the sea surface winds and wind waves near the Korean marginal seas on the basis of prediction results of the sea surface winds from MM5/KMA model, which is being used for the operation system at the Korea Meteorological observation buoy data to verify the model results during Typhoon events. The correlation coefficients between the models and observation data reach up to about 95%, supporting that these models satisfactorily simulate the sea surface winds and wave heights even at the coastal regions. Based on these verification results, we have carried out numerical experiments about the wave modulation. When there exist an opposite strong current for the propagation direction of the waves or wind direction, wave height and length gets higher and shorter, and vice versa. It is proved that these modulations of wave parameters are well generated when wind speed is relatively week.

  • PDF

Vulnerability assessment of residential steel building considering soil structure interaction

  • Kailash Chaudhary;Kshitij C. Shrestha;Ojaswi Acharya
    • Earthquakes and Structures
    • /
    • v.25 no.2
    • /
    • pp.79-87
    • /
    • 2023
  • Special moment resisting steel frame structures are now being used commonly in highly seismic regions as seismically reliable structures. However, a very important parameter describing the dynamics of steel structures during earthquake loading, Soil Structure Interaction (SSI), is generally neglected. In this study, the significance of consideration of flexibility of soil in being able to obtain a result closer to reality is asserted. The current paper focuses on calculation of seismic fragility curves special moment resisting steel frame structures under different earthquake loadings for fixed-base and SSI models. The observation of obtained fragility curves lead to the conclusion that the SSI has a considerable effect on component fragility for the steel structures, with its effects decreasing for higher peak ground acceleration. The results show that the structures when considered SSI have a higher probability of exceeding a damage limit state. This observation attests the role of SSI in the accurate study of structural performance.

A investigation on the responses of conductive structures of Korean Peninsula using EM modeling

  • Yang, Jun-Mo;Oh, Seok-Hoon;Lee, Duk-Kee;Kwon, Byung-Doo;Youn, Yong-Hoon
    • 한국지구과학회:학술대회논문집
    • /
    • 2004.02a
    • /
    • pp.52-57
    • /
    • 2004
  • Korean Peninsula located between Japan and China where earthquakes frequently occur, have little geophysical observation despite its tectonic importance. This study suggests the inland conductive structures inferred from GDS data measured in Korean Peninsula and try to interpret induction arrows quantitatively with the aid of 2- and 3-D geomagnetic induction modeling. Ogcheon Belt (OCB) and Imjin River Belt (IRB) are regarded as main conductive structures in Korea Peninsula, the induction arrows for the period of 60 minutes show very weak anomaly due to sea effect, which is supported by the results of 3-modeling also. However, for the period of 10 minutes, induction arrows at YIN and ICHN show anomalous patterns considered as the effect of IRB in spite of sea effect. The results of 2-D modeling which simplify geological situations provide overall information on IRB

  • PDF

The Abnormal Groundwater Changes as Potential Precursors of 2016 ML5.8 Gyeongju Earthquake in Korea (지하수위 이상 변동에 나타난 2016 ML5.8 경주 지진의 전조 가능성)

  • Lee, Hyun A;Hamm, Se-Yeong;Woo, Nam C.
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.393-400
    • /
    • 2018
  • Despite some skeptical views on the possibility of earthquake prediction, observation and evaluation of precursory changes have been continued throughout the world. In Korea, the public concern on the earthquake prediction has been increased after 2016 $M_L5.8$ and 2017 $M_L5.4$ earthquakes occurred in Gyeongju and Pohang, the southeastern part in Korea, respectively. In this study, the abnormal increase of groundwater level was observed before the 2016 $M_L5.8$ Gyeongju earthquake in a borehole located in 52 km away from the epicenter. The well was installed in the Yangsan fault zone, and equipped for the earthquake surveillance. The abnormal change in the well would seem to be a precursor, considering the hydrogeological condition and the observations from previous studies. It is necessary to set up a specialized council to support and evaluate the earthquake prediction and related researches for the preparation of future earthquake hazards.