• Title/Summary/Keyword: earthquake hazard

Search Result 390, Processing Time 0.029 seconds

Performance Analysis of Friction Pendulum System using PVDF/MgO Friction Material (PVDF/MgO 마찰재를 이용한 마찰면진장치의 성능 분석)

  • Kim, Sung-Jo;Kim, Ji-Su;Han, Tong-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.213-219
    • /
    • 2021
  • Polytetrafluoroethylene (PTFE) is a commercialized friction material in friction pendulum systems used for earthquake hazard mitigation in structures, and it has excellent chemical resistance and frictional performance. However, PTFE has a relatively low wear resistance for the friction pendulum systems in service. As an alternative to PTFE, a cost-effective frictional material, polyvinylidene fluoride (PVDF) strengthened by magnesium oxide (MgO), with enhanced wear resistance performance is proposed in this study. The frictional performance of the developed PVDF/MgO was evaluated through experiments and compared with that of PTFE. Accordingly, a friction pendulum system was designed using the measured friction coefficient. The performance of this friction pendulum system was evaluated via nonlinear time history analyses of bridges. Subsequently, the plausibility of using PVDF/MgO as an alternative to PTFE as a friction material for friction pendulum systems was discussed.

Evaluation of Liquefaction Potential for Soil Using Probabilistic Approaches (확률적 접근방법에 의한 지반의 액상화 가능성 평가)

  • Yi, Jin-Hak;Kwon, O-Soon;Park, Woo-Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5C
    • /
    • pp.313-322
    • /
    • 2006
  • Liquefaction of soil foundation is one of the major seismic damage types for infrastructures. In this paper, deterministic and probabilistic approaches for the evaluation of liquefaction potential are briefly summarized and the risk assessment method is newly proposed using seismic fragility and seismic hazard analyses. Currently the deterministic approach is widely used to evaluate the liquefaction potential in Korea. However, it is very difficult to handle a certain degree of uncertainties in the soil properties such as elastic modulus and resistant capacity by deterministic approach, and the probabilistic approaches are known as more promising. Two types of probabilistic approaches are introduced including (1) the reliability analysis (to obtain probability of failure) for a given design earthquake and (2) the seismic risk analysis of liquefaction for a specific soil for a given service life. The results from different methods show a similar trend, and the liquefaction potential can be more quantitatively evaluated using the new risk analysis method.

Proposed program for monitoring recent Crustal movement in Korean Peninsula

  • Hamdy, Ahmed M.;Jo, Bong-Gon
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.4
    • /
    • pp.283-292
    • /
    • 2002
  • The Korean peninsula is located at the edge of the East Asian active margin. The seismic activity in the Korean Peninsula is relatively low compared with the neighboring countries China and Japan. According to the available Seismic information, the Korean Peninsula is not totally safe from the Earthquake disaster. Moreover, the area is surrounded by varies tectonic forces which is resulted from the relative movements of the surrounding tectonic plates "Pacific, Philippine Sea, Eurasian and South China". Nowadays South Korea has 65 GPS stations belong to 5 governmental organizations "each organization figure out its own GPS stations for different requirements" In order to minimize the seismic hazard in the Korean Peninsula a program for monitoring the recent crustal movement has been designed considering the uses of the available GPS station "some selected stations from the previously mentioned stations" and the tectonic settings in and around the Korean Peninsula. This program is composed of two main parts, the first part to monitor the crustal deformation around the Korean Peninsula with the collaboration of the surrounding countries "China and Japan" this part is composed of two phases "East Sea Phase and Yellow Sea Phase". These phases will be helpful in determining the deformation parameters in the East Sea and the Yellow Sea respectively While the Second part of this program, is designed to determine the deformation parameters id and around the main faults in the Korean Peninsula and the relative movement between the Korean Peninsula and the Cheju Island. Through out this study the needs of crustal movement center rose up to collect the data from the previously mentioned stations and Organizations in order to use such reliable data in different geodynamical application.

  • PDF

Near-surface Shear-wave Velocities Derived from Microtremors and Teleseismic Data at the Hwacheon Seismic Station (상시미동 및 원거리 지진 자료로부터 구한 화천 지진관측소의 천부 횡파속도구조)

  • Yun, Won Young;Park, Sun-Cheon;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.190-195
    • /
    • 2013
  • We estimated near-surface shear-wave velocity (${\nu}_s$) at the Hwacheon seismic station using a geologic log of a well, microtremors recorded during a period of 56 days, and records of three teleseismic events ($M_w{\geq}6.0$). The vs of the 10-m thick soil layer (${\nu}^s_s$= 296 m/s) was determined from horizontal-to-vertical spectral ratios of microtremors recorded at the surface. The average ${\nu}_s$ ($\bar{\nu}_s$= 1,309 m/s) from the surface to the 96-m depth of a borehole sensor, was computed using spectral coherence analyses of data recorded by surface- and borehole-sensors for the three teleseismic events. Using these calculated values of ${\nu}^s_s$ and $\bar{\nu}_s$, the computed bedrock ${\nu}_s$ is 2,150 m/s and the time-averaged ${\nu}_s$ to a 30-m depth is 696 m/s. Accordingly the Hwacheon seismic station is regarded as a relatively good site. The deduced near-surface ${\nu}_s$ can be used for further quantitative evaluation of site amplification and earthquake hazard.

Investigation on Response Modification Factor of RC Structural Walls in Apartment Buildings (아파트 건물의 구조 벽체에 대한 반응수정계수)

  • 한상환;오영훈;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.544-552
    • /
    • 2001
  • Korea is classified into low and moderate seismic zone from the view-point of seismic hazard level. Korean seismic provisions has been developed based on UBC and ATC 3-06. Thus, in calculation of design base shear according to Korean provisions response modification factor (R) is included in the formula of design base shear. The major role of this factor is to reduce the elastic design base shear whereby structures can behave in inelastic range during design level earthquake ground motions(mean return period of 475 yrs.). R factor is assigned according to material and structural systems. In this study, R factor for bearing wall system is considered. Most of the walls of apartment buildings in Korea resist gravity and seismic loads simultaneously so that this wall system can be classified into bearing wall system. Structural details of these walls are different from those used in Japan and U.S.. They are all rectangular in sectional shape rather than barbell in shape, and also have special lateral reinforcement details at the boundaries of a wall. In Korean seismic design provisions(1988), two different values(3.0 and 3.5) of R factor are assigned to the bearing wall systems according to the wall details. However, in updated seismic provisions(2000), only one value is assigned to R factor(3.0) irrespective of wall details. In this study, the design base shear values in Korean seismic design provisions(1988, 2000), ATC 3-06, UBC are compared. Also experimental study was carried out to evaluate the seismic performance of structural walls. For this purpose, five test specimens were made which have special details used in apartment bearing wall systems in Korea. Based on the results of this study, response modification factor for bearing wall system is discussed.

The Microtremor HVSRs in the SW Korean Peninsula I: Characteristics of the HVSR Peak Frequency and Amplification (한반도 남서부의 상시미동 HVSR 연구 I: 정점주파수와 증폭효과의 특성)

  • Jung, Hee-Ok;Kim, Hyoung-Jun;Jo, Bong-Gon;Park, Nam-Ryul
    • Journal of the Korean earth science society
    • /
    • v.31 no.6
    • /
    • pp.541-554
    • /
    • 2010
  • Fifteen min-microtremor data sets were collected at 136 sites from a coastal area of Kunsan and 117 sites from an inland area of Jeonju located in SW Korea, and were analyzed for the HVSR (Horizontal to Vertical Spectral Ratio) of the sites. The microtremor spectra of the coastal area have stronger energy in the lower frequency range from 1-6 Hz than those of the coastal area. This result can be attributed to the effect of the waves and tides in the Keum river and the Yellow sea. Twenty four hours of measurement of the microtremor indicated that the microtremor spectrum correlates with the human activities, but the microtremor HVSR peak was observed consistently at the characteristic frequency for the site. The HVSR peaks were grouped into 4 types -"single peak", "double peak", "broad peak" or "no peak"- based on their shapes. More than 90% of the data sets exhibit peak frequencies ($F_0$) which can be easily identified. The distribution of $F_0$ reveals a close relationship with the topography and local geology of the areas, exhibiting high F0s in the hillside areas and low $F_0s$ in the reclaimed land area. While the amplitudes of microtremor HVSR peak frequencies are less than 4 in the downstream of the inland area, those of the recently reclaimed land in the coastal area are extremely high (more than 10). The results of this study indicate that detailed HVSR studies are essential for the earthquake hazard reduction of reclaimed lands.

Seismic Behavior and Performance Evaluation of Uckling-restrained Braced Frames (BRBFs) using Superelastic Shape Memory Alloy (SMA) Bracing Systems (초탄성 형상기억합금을 활용한 좌굴방지 가새프레임 구조물의 지진거동 및 성능평가)

  • Hu, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.875-888
    • /
    • 2013
  • The researches have recently progressed toward the use of the superelastic shape memory alloys (SMAs) to develop new smart control systems that reduce permanent deformation occurring due to severe earthquake events and that automatically recover original configuration. The superelastic SMA materials are unique metallic alloys that can return to undeformed shape without additional heat treatments only after the removal of applied loads. Once the superelastic SMA materials are thus installed at the place where large deformations are likely to intensively occur, the structural system can make the best use of recentering capabilities. Therefore, this study is intended to propose new buckling-restrained braced frames (BRBFs) with superelastic SMA bracing systems. In order to verify the performance of such bracing systems, 6-story braced frame buildings were designed in accordance with the current design specifications and then nonlinear dynamic analyses were performed at 2D frame model by using seismic hazard ground motions. Based on the analysis results, BRBFs with innovative SMA bracing systems are compared to those with conventional steel bracing systems in terms of peak and residual inter-story drifts. Finally, the analysis results show that new SMA bracing systems are very effective to reduce the residual inter-story drifts.

Regional Estimation of Site-specific Seismic Responses at Gyeongju by Building GIS-based Geotechnical Information System (GIS 기반의 지반 정보 시스템 구축을 통한 경주 지역 부지고유 지진 응답의 지역적 평가)

  • Sun, Chang-Guk;Chung, Choon-Ki
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.2
    • /
    • pp.38-50
    • /
    • 2008
  • The site-specific seismic responses and corresponding seismic hazards are influenced mainly by the subsurface geologic and geotechnical dynamic characteristics. To estimate reliably the seismic responses in this study, a geotechnical information system (GTIS) within GIS framework was developed by introducing new concepts, which consist of the extended area containing the study area and the additional site visit for acquiring surface geo-knowledge data. The GIS-based GTIS was built for Gyeongju area, which has records of abundant historical seismic hazards reflecting the high potential of future earthquakes. At the study area, Gyeongju, intensive site investigations and pre-existing geotechnical data collections were performed and the site visits were additionally carried out for assessing geotechnical characteristics and shear wave velocity ($V_S$) representing dynamic property. Within the GTIS for Gyeongju area, the spatially distributed geotechnical layers and $V_S$ in the entire study area were reliably predicted from the site investigation data using the geostatistical kriging method. Based on the spatial geotechnical layers and $V_S$ predicted within the GTIS, a seismic zoning map on site period ($T_G$) from which the site-specific seismic responses according to the site effects can be estimated was created across the study area of Gyeongju. The spatial $T_G$ map at Gyeongju indicated seismic vulnerability of two- to five-storied buildings. In this study, the seismic zonation based on $T_G$ within the GIS-based GTIS was presented as regional efficient strategy for seismic hazard prediction and mitigation.

  • PDF

Expected Segmentation of the Chugaryung Fault System Estimated by the Gravity Field Interpretation (추가령단층대의 중력장 데이터 해석)

  • Choi, Sungchan;Choi, Eun-Kyeong;Kim, Sung-Wook;Lee, Young-Cheol
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.743-752
    • /
    • 2021
  • The three-dimensional distribution of the fault was evaluated using gravity field interpretation such as curvature analysis and Euler deconvolution in the Seoul-Gyeonggi region where the Chugaryeong fault zone was developed. In addition, earthquakes that occurred after 2000 and the location of faults were compared. In Bouguer anomaly of Chugaryeong faults, the Pocheon Fault is an approximately 100 km fault that is extended from the northern part of Gyeonggi Province to the west coast through the central part of Seoul. Considering the frequency of epicenters is high, there is a possibility of an active fault. The Wangsukcheon Fault is divided into the northeast and southwest parts of Seoul, but it shows that the fault is connected underground in the bouguer anomaly. The magnitude 3.0 earthquake that occurred in Siheung city in 2010 occurred in an anticipated fault (aF) that developed in the north-south direction. In the western region of the Dongducheon Fault (≒5,500 m), the density boundary of the rock mass is deeper than that in the eastern region (≒4,000 m), suggesting that the tectonic movements of the western and eastern regions of the Dongducheon Fault is different. The maximum depth of the fracture zone developed in the Dongducheon Fault is about 6,500 m, and it is the deepest in the research area. It is estimated that the fracture zone extends to a depth of about 6,000 m for the Pocheon Fault, about 5,000 m for the Wangsukcheon Fault, and about 6,000 m for the Gyeonggang Fault.

Initial results from spatially averaged coherency, frequency-wavenumber, and horizontal to vertical spectrum ratio microtremor survey methods for site hazard study at Launceston, Tasmania (Tasmania 의 Launceston 시의 위험 지역 분석을 위한 공간적 평균 일관성, 주파수-파수, 수평과 수직 스펙트럼의 비율을 이용한 상신 진동 탐사법의 일차적 결과)

  • Claprood, Maxime;Asten, Michael W.
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.132-142
    • /
    • 2009
  • The Tamar rift valley runs through the City of Launceston, Tasmania. Damage has occurred to city buildings due to earthquake activity in Bass Strait. The presence of the ancient valley, the Tamar valley, in-filled with soft sediments that vary rapidly in thickness from 0 to 250mover a few hundreds metres, is thought to induce a 2D resonance pattern, amplifying the surface motions over the valley and in Launceston. Spatially averaged coherency (SPAC), frequency-wavenumber (FK) and horizontal to vertical spectrum ratio (HVSR) microtremor survey methods are combined to identify and characterise site effects over the Tamar valley. Passive seismic array measurements acquired at seven selected sites were analysed with SPAC to estimate shear wave velocity (slowness) depth profiles. SPAC was then combined with HVSR to improve the resolution of these profiles in the sediments to an approximate depth of 125 m. Results show that sediments thicknesses vary significantly throughout Launceston. The top layer is composed of as much as 20m of very soft Quaternary alluvial sediments with a velocity from 50 m/s to 125 m/s. Shear-wave velocities in the deeper Tertiary sediment fill of the Tamar valley, with thicknesses from 0 to 250m vary from 400 m/s to 750 m/s. Results obtained using SPAC are presented at two selected sites (GUN and KPK) that agree well with dispersion curves interpreted with FK analysis. FK interpretation is, however, limited to a narrower range of frequencies than SPAC and seems to overestimate the shear wave velocity at lower frequencies. Observed HVSR are also compared with the results obtained by SPAC, assuming a layered earth model, and provide additional constraints on the shear wave slowness profiles at these sites. The combined SPAC and HVSR analysis confirms the hypothesis of a layered geology at the GUN site and indicates the presence of a 2D resonance pattern across the Tamar valley at the KPK site.