• Title/Summary/Keyword: earthquake forces

Search Result 402, Processing Time 0.021 seconds

Comparison of classical and reliable controller performances for seismic response mitigation

  • Kavyashree, B.G.;Patil, Shantharama;Rao, Vidya S.
    • Earthquakes and Structures
    • /
    • v.20 no.3
    • /
    • pp.353-364
    • /
    • 2021
  • Natural hazards like earthquakes, high winds, and tsunami are a threat all the time for multi-story structures. The environmental forces cannot be clogged but the structures can be prevented from these natural hazards by using protective systems. The structural control can be achieved by using protective systems like the passive, active, semi-active, and hybrid protective systems; but the semi-active protective system has gained importance because of its adaptability to the active systems and reliability of the passive systems. Therefore, a semi-active protective system for the earthquake forces has been adopted in this work. Magneto-Rheological (MR) damper is used in the structure as a semi-active protective system; which is connected to the current driver and proposed controller. The Proportional Integral Derivative (PID) controller and reliable PID controller are two proposed controllers, which will actuate the MR damper and the desired force is generated to mitigate the vibration of the structural response subjected to the earthquake. PID controller and reliable PID controller are designed and tuned using Ziegler-Nichols tuning technique along with the MR damper simulated in Simulink toolbox and MATLAB to obtain the reduced vibration in a three-story benchmark structure. The earthquake is considered to be uncertain; where the proposed control algorithm works well during the presence of earthquake; this paper considers robustness to provide satisfactory resilience against this uncertainty. In this work, two different earthquakes are considered like El-Centro and Northridge earthquakes for simulation with different controllers. In this paper performances of the structure with and without two controllers are compared and results are discussed.

Multi-point earthquake response of the Bosphorus Bridge to site-specific ground motions

  • Bas, Selcuk;Apaydin, Nurdan Memisoglu;Harmandar, Ebru;Catbas, Necati
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.197-211
    • /
    • 2018
  • The study presents the earthquake performance of the Bosphorus Bridge under multi-point earthquake excitation considering the spatially varying site-specific earthquake motions. The elaborate FE model of the bridge is firstly established depending on the new considerations of the used FEM software specifications, such as cable-sag effect, rigid link and gap elements. The modal analysis showed that singular modes of the deck and the tower were relatively effective in the dynamic behavior of the bridge due to higher total mass participation mass ratio of 80%. The parameters and requirements to be considered in simulation process are determined to generate the spatially varying site-specific ground motions. Total number of twelve simulated ground motions are defined for the multi-support earthquake analysis (Mp-sup). In order to easily implement multi-point earthquake excitation to the bridge, the practice-oriented procedure is summarized. The results demonstrated that the Mp-sup led to high increase in sectional forces of the critical components of the bridge, especially tower base section and tensile force of the main and back stay cables. A close relationship between the dynamic response and the behavior of the bridge under the Mp-sup was also obtained. Consequently, the outcomes from this study underscored the importance of the utilization of the multi-point earthquake analysis and the necessity of considering specifically generated earthquake motions for suspension bridges.

Evaluation of seismic performance of mid-rise reinforced concrete frames subjected to far-field and near-field ground motions

  • Ansari, Mokhtar;Ansari, Masoud;Safiey, Amir
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.453-462
    • /
    • 2018
  • Damages to buildings affected by a near-fault strong ground motion are largely attributed to the vertical component of the earthquake resulting in column failures, which could lead to disproportionate building catastrophic collapse in a progressive fashion. Recently, considerable interests are awakening to study effects of earthquake vertical components on structural responses. In this study, detailed modeling and time-history analyses of a 12-story code-conforming reinforced concrete moment frame building carrying the gravity loads, and exposed to once only the horizontal component of, and second time simultaneously the horizontal and vertical components of an ensemble of far-field and near-field earthquakes are conducted. Structural responses inclusive of tension, compression and its fluctuations in columns, the ratio of shear demand to capacity in columns and peak mid-span moment demand in beams are compared with and without the presence of the vertical component of earthquake records. The influences of the existence of earthquake vertical component in both exterior and interior spans are separately studied. Thereafter, the correlation between the increase of demands induced by the vertical component of the earthquake and the ratio of a set of earthquake record characteristic parameters is investigated. It is shown that uplift initiation and the magnitude of tensile forces developed in corner columns are relatively more critical. Presence of vertical component of earthquake leads to a drop in minimum compressive force and initiation of tension in columns. The magnitude of this reduction in the most critical case is recorded on average 84% under near-fault ground motions. Besides, the presence of earthquake vertical components increases the shear capacity required in columns, which is at most 31%. In the best case, a direct correlation of 95% between the increase of the maximum compressive force and the ratio of vertical to horizontal 'effective peak acceleration (EPA)' is observed.

Generalized Rayleigh wave propagation in a covered half-space with liquid upper layer

  • Negin, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.56 no.3
    • /
    • pp.491-506
    • /
    • 2015
  • Propagation of the generalized Rayleigh waves in an initially stressed elastic half-space covered by an elastic layer is investigated. It is assumed that the initial stresses are caused by the uniformly distributed normal compressional forces acting on the face surface of the covering layer. Two different cases where the compressional forces are "dead" and "follower" forces are considered. Three-dimensional linearized theory of elastic waves in initially stressed bodies in plane-strain state is employed and the elasticity relations of the materials of the constituents are described through the Murnaghan potential where the influence of the third order elastic constants is taken into consideration. The dispersion equation is derived and an algorithm is developed for numerical solution to this equation. Numerical results for the dispersion of the generalized Rayleigh waves on the influence of the initial stresses and on the influence of the character of the external compressional forces are presented and discussed. These investigations provide some theoretical foundations for study of the near-surface waves propagating in layered mechanical systems with a liquid upper layer, study of the structure of the soil of the bottom of the oceans or of the seas and study of the behavior of seismic surface waves propagating under the bottom of the oceans.

Dynamic Non-Linear Analysis of Ocean Cables Subjected to Earthquakes (지진력을 받는 해양케이블의 동적 비선형해석)

  • 김남일;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.77-86
    • /
    • 1999
  • In the previous $paper^{(1),(2)}$, a geometrically non-linear finite element formulation of spatial cables subjected to self-weights and support motions was presented using multiple noded cable elements and how to determine the initial equililbrium state of cables was addressed. In this paper, in order to perform dynamic non-linear analysis of ocean cables subjected to support motions and earthquakes, a numerical method to calculate Morison forces and incorporate effects of earthquake motions is presented based on the Newmark method. Challenging example problems are presented in order to investigate dynamic non-linear behaviors of ocean cables subjected to support motions and earthquake loadings.

  • PDF

Introduction of the Building Standard Law of Japan and the Performance-Based Seismic Design Methodology (일본의 내진설계법 및 내진성능 평가법의 소개)

  • 전대한;노필성
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.341-348
    • /
    • 2002
  • This manuscript introduces the Building Standard Law of Japan revised at 2000, June. Recently, The Building Standard Law of Japan was revised into the performance-based design format following the trend of international. The structural performance was evaluated for two limiting states; serviceability and soundness limit state, and safety limit state. The design earthquake forces were determined on the basis of seismic activities of the construction site, taking into consideration (a)characteristics of focal mechanism, (b)amplification by local surfaces geology, and (c)soil-structure interaction, in addition to the properties of the planned building including scale, configuration, foundation system, and structural characteristics.

  • PDF

Physical Modeling of Soil-Structure Systems Response to Earthquake Loading

  • Abdoun, Tarek;Gonzalez, Lenart
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.43-51
    • /
    • 2007
  • Liquefaction-induced lateral spreading continues to be a major cause of damage to deep foundations. Currently there is a huge uncertainty associated with the maximum lateral pressures and forces applied by the liquefied soil to deep foundations. Furthermore, recent centrifuge and is shaking table tests of pile foundations indicate that the permeability of the liquefied sand is an extremely important and poorly understood factor. This article presents experimental results and analysis of one of the centrifuge tests that were conducted at the 150 g-ton RPI centrifuge to investigate the effect of soil permeability in the response of single piles and pile groups to lateral spreading.

Advanced inelastic static (pushover) analysis for earthquake applications

  • Elnashai, A.S.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.1
    • /
    • pp.51-69
    • /
    • 2001
  • Whereas the potential of static inelastic analysis methods is recognised in earthquake design and assessment, especially in contrast with elastic analysis under scaled forces, they have inherent shortcomings. In this paper, critical issues in the application of inelastic static (pushover) analysis are discussed and their effect on the obtained results appraised. Areas of possible developments that would render the method more applicable to the prediction of dynamic response are explored. New developments towards a fully adaptive pushover method accounting for spread of inelasticity, geometric nonlinearity, full multi-modal, spectral amplification and period elongation, within a framework of fibre modelling of materials, are discussed and preliminary results are given. These developments lead to static analysis results that are closer than ever to inelastic time-history analysis. It is concluded that there is great scope for improvements of this simple and powerful technique that would increase confidence in its employment as the primary tool for seismic analysis in practice.

Earthquake behavior of stiffened RC frame structures with/without subsoil

  • Ozdemir, Y.I.;Ayvaz, Y.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.5
    • /
    • pp.571-585
    • /
    • 2008
  • The purpose of this study is to investigate the linear earthquake behavior of the frame structures including subsoil with different stiffening members and to compare the results of each frame considered. These comparisons are made separately for displacement, bending moments and axial forces for frames with different storey and bay numbers for the time history and the modal analyses. The results of both methods are also compared. The results of the frames with subsoil are also compared with the results of the frames without subsoil. It is concluded that all stiffening members considered in this study decrease the lateral displacement of the frame and the bending moment of the columns and increase the axial force in the columns and that configuration of the bracing members come out to be an important parameter in braced frames since the frames with the same type of bracing give different results depending on configuration. It is also concluded that, in general, the absolute maximum displacements of the frames modeled with subsoil are larger than those of the frames modeled without subsoil.

The influence of different support movements and heights of piers on the dynamic behavior of bridges -Part I: Earthquake acting transversely to the deck

  • Michaltsos, George T.;Raftoyiannis, Ioannis G.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.4
    • /
    • pp.431-454
    • /
    • 2009
  • This paper presents a simple model for studying the dynamic response of multi-span bridges resting on piers with different heights and subjected to earthquake forces acting transversely to the bridge, but varying spatially along its length. The analysis is carried out using the modal superposition technique, while the solution of the resulting integral-differential equations is obtained via the Laplace transformation. It has been found that the piers' height and the quality of the foundation soil can affect significantly the dynamic behavior of such bridges. Typical examples showing the effectiveness of the method are presented with useful results listed.