• 제목/요약/키워드: earthquake force

Search Result 692, Processing Time 0.026 seconds

3-Dimensional Inelastic Behavior of Standard School Building with Various Hysteresis Models (표준학교건물의 3차원 비탄성거동에 대한 이력모델의 영향)

  • Yoon, Tae Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2917-2923
    • /
    • 2015
  • The three dimensional inelastic response characteristics of the standard school buildings depending on hysteresis models are reviewed. Three artificial earthquake records in accordance with KBC(Korea Building Code) are used and the inelastic response characteristics such as story shear force, story drift ratio, story displacement, hinge distribution state are reviewed with four hysteresis models. As results, story shear force is increased by maximum 27% and story drift ratio is increased by maximum 30% according to hysteresis models. Modified Takeda Model shows maximum story shear and story drift raio in longitudinal and short direction, expecting higher safety. Story shear shows minimum value with Clough Model in both directions and story drift ratio shows minimum with Takeda model in longitudinal and with Clough model in short direction, so these models are expected to decrease the safety ratio.

Effect of thermal regime on the seismic response of a dry bridge in a permafrost region along the Qinghai-Tibet Railway

  • Zhang, Xiyin;Zhang, Mingyi;Chen, Xingchong;Li, Shuangyang;Niu, Fujun
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.429-442
    • /
    • 2017
  • Dry bridges have been widely applied in the Qinghai-Tibet Railway (QTR) to minimize the thermal disturbance of engineering to the permafrost. However, because the Qinghai-Tibet Plateau is an area with a high potential occurrence of earthquakes, seismic action can easily destroy the dry bridges. Therefore, a three-dimensional numerical model, with consideration of the soil-pile interactions, is established to investigate the thermal characteristics and their impact on the seismic response of the dry bridge in permafrost region along the QTR. The numerical results indicate that there exist significant differences in the lateral displacement, shear force, and bending moment of the piles in different thermal conditions under seismic action. When the active layer become from unfrozen to frozen state, the maximum displacement of the bridge pile reduces, and the locations of the zero and peak values of the shear force and bending moment also change. It is found that although the higher stiffness of frozen soil confines the lateral displacement of the pile, compared with unfrozen soil, it has an adverse effect on the earthquake energy dissipation capacity.

Tectonic Structure Modeling around the Ulleung Basin and Dokdo Using Potential Data (포텐셜 자료를 이용한 울릉분지와 독도 주변 지체구조 연구)

  • Park, Gye-Soon;Park, Jun-Suk;Kwon, Byung-Doo;Kim, Chang-Hwan;Park, Chan-Hong
    • Journal of the Korean earth science society
    • /
    • v.30 no.2
    • /
    • pp.165-175
    • /
    • 2009
  • The East Sea including the area of this study is identified as a typical back-arc sea located in the backside of the Circum-Pacific volcanic and earthquake belt. Previous studies reported that the East Sea has begun to open by tensile force and formed its current shape. In this study, we investigate the regional tectonic structure of the East Sea using ship-borne gravity, magnetic, and satellite gravity data. The result of three-dimensional depth inversion shows that Moho depth of the study area is approximately 13-25km and inversely proportional to the thickness of the crust. In addition, as approaching to the center of the Ulleung Basin (UB), the thickness of the crust of the UB becomes thinner due to the extension caused by tensile force which had opened the East Sea.

Analytical Study on Structural Behaviors of Post-Tensioned Column-Base Connections for Steel Modular Structures (철골 모듈러 구조물의 포스트텐션 기둥-바닥 접합부 거동에 대한 해석적 연구)

  • Choi, Kyung-Suk;Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.427-435
    • /
    • 2020
  • Modular structures are relatively lightweight compared to reinforced-concrete or steel structures. However, it is difficult to achieve structural integrity between the columns of unit modules in a modular structure, which causes undesirable effects on the lateral force resistance capacity against wind and earthquake loads. This is more prominent in modular structures whose overall heights are greater. Hence, a post-tensioned modular structural system is proposed herein to improve the lateral force resistance capacity of a typical modular structure. A post-tensioned column-base connection, which is the main component of the proposed modular structural system, is configured with shapes and characteristics that allow inducing self-centering behaviors. Finite element analysis was then performed to investigate the hysteretic behaviors of the post-tensioned column-base connection. The analysis results show that the hysteretic behaviors are significantly affected by the initial tension forces and beam-column connection details at the base.

Inelastic Time History Analysis of an Unbraced 5-Story Steel Framed Structure for Arrangement of Semi-Rigid Connection (반강접 접합부 배치에 따른 비가새 5층 철골골조구조물의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Kim, Sin-Ae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.313-324
    • /
    • 2010
  • In this study, an unbraced five-story steel-framed structure was designed in accordance with KBC2005 to understand the features of structural behavior for the arrangement of semi-rigid connections. An inelastic time history analysis of structural models was performed, wherein all the connections were idealized as fully rigid and semi-rigid. Additionally, horizontal and vertical arrangements of semi-rigid connections were used for the models. A fiber model was utilized for the moment-curvature relationship of a steel beam and a column, a three-parameter power model for the moment-rotation angle of the semi-rigid connection, and a three-parameter model for the hysteretic behavior of a steel beam, column, and connection. The base-shear force, top displacement, story drift, required ductility for the connection, maximum bending moment of the column, beam, and connection, and distribution of the plastic hinge were investigated using four earthquake excitations with peak ground acceleration for a mean return period of 2,400 years and for the maximum base-shear force in the pushover analysis of a 5% story drift. The maximum base-shear force and story drift decreased with the outer vertical distribution of the semi-rigid connection, and the required ductility for the connection decreased with the higher horizontal distribution of the semi-rigid connection. The location of the maximum story drift differed in the pushover analysis and the time history analysis, and the magnitude was overestimated in the pushover analysis. The outer vertical distribution of the semi-rigid connection was recommended for the base-shear force, story drift, and required ductility for the connection.

Parametric Study of Dynamic Soil-pile-structure Interaction in Dry Sand by 3D Numerical Model (3차원 수치 모델을 이용한 건조사질토 지반-말뚝-구조물 동적 상호작용의 매개변수 연구)

  • Kwon, Sun-Yong;Yoo, Min-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.9
    • /
    • pp.51-62
    • /
    • 2016
  • Parametric studies for various site conditions by using 3d numerical model were carried out in order to estimate dynamic behavior of soil-pile-structure system in dry soil deposits. Proposed model was analyzed in time domain using FLAC3D which is commercial finite difference code to properly simulate nonlinear response of soil under strong earthquake. Mohr-Coulomb criterion was adopted as soil constitutive model. Soil nonlinearity was considered by adopting the hysteretic damping model, and an interface model which can simulate separation and slip between soil and pile was adopted. Simplified continuum modeling was used as boundary condition to reduce analysis time. Also, initial shear modulus and yield depth were appropriately determined for accurate simulation of system's nonlinear behavior. Parametric study was performed by varying weight of superstructure, pile length, pile head fixity, soil relative density with proposed numerical model. From the results of parametric study, it is identified that inertial force induced by superstructure is dominant on dynamic behavior of soil-pile-structure system and effect of kinematic force induced by soil movement was relatively small. Difference in dynamic behavior according to the pile length and pile head fixity was also numerically investigated.

Dynamic Behavior Characteristics of Group Piles with Relative Density in Sandy Soil (건조 모래지반의 상대밀도에 따른 무리말뚝의 동적거동특성)

  • Heungtae Kim;Hongsig Kang;Kusik Jeong;Kwangkuk Ahn
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.9
    • /
    • pp.33-40
    • /
    • 2023
  • The lateral load which is applied to the pile foundation supporting the superstructure during an earthquake is divided into the inertia force of the upper structure and the kinematic force of the ground. The inertia force and the kinematic force could cause failure to the pile foundation through different complex mechanisms. So it is necessary to predict and evaluate interaction of the ground-pile-structure properly for the seismic design of the foundation. The interaction is affected by the lateral behavior of the structure, the length of the pile, the boundary conditions of the head, and the relative density of the ground. Confining pressure and ground stiffness change accordingly when the relative density changes, and it results that the coefficient of subgrade reaction varies depending on each system. Horizontal bearing behavior and capacity of the pile foundation vary depending on lateral load condition and relative density of the sandy soil. Therefore, the 1g shaking table tests were conducted to confirm the effect of the relative density of the dried sandy soil to dynamic behavior of the group pile supporting the superstructure. The result shows that, as the relative density increases, maximum acceleration of the superstructure and the pile cap increases and decreases respectively, and the slope of the p-y curve of the pile decreases.

A Study on Beam-to-Column Connections with Plate Type Energy Absorption System (플레이트형 에너지 흡수장치를 가지는 기둥-보 접합부에 관한 연구)

  • Oh, Sang Hoon;Park, Hae Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.103-114
    • /
    • 2013
  • Recently, there is a growing interest on sustainable connection system that makes it possible to reuse of main structural members by concentrating most of the damage in the frame caused by strong horizontal force, such as earthquake, to damper. In this study proposed a new type of damage-controlled connection system applying these concepts and analysed the major structural performance of the proposed system through the full-scale cyclic loading test and nonlinear finite element analyses. According to the result, it derived the optimal damper/beam strength ratio that minimize the damage of main members and satisfy at least the fully plastic moment of the beam. And it was to verify the possibility of applying as seismic connection details.

Transverse seismic response of continuous steel-concrete composite bridges exhibiting dual load path

  • Tubaldi, E.;Barbato, M.;Dall'Asta, A.
    • Earthquakes and Structures
    • /
    • v.1 no.1
    • /
    • pp.21-41
    • /
    • 2010
  • Multi-span steel-concrete composite (SCC) bridges are very sensitive to earthquake loading. Extensive damage may occur not only in the substructures (piers), which are expected to yield, but also in the other components (e.g., deck, abutments) involved in carrying the seismic loads. Current seismic codes allow the design of regular bridges by means of linear elastic analysis based on inelastic design spectra. In bridges with superstructure transverse motion restrained at the abutments, a dual load path behavior is observed. The sequential yielding of the piers can lead to a substantial change in the stiffness distribution. Thus, force distributions and displacement demand can significantly differ from linear elastic analysis predictions. The objectives of this study are assessing the influence of piers-deck stiffness ratio and of soil-structure interaction effects on the seismic behavior of continuous SCC bridges with dual load path, and evaluating the suitability of linear elastic analysis in predicting the actual seismic behavior of these bridges. Parametric analysis results are presented and discussed for a common bridge typology. The response dependence on the parameters is studied by nonlinear multi-record incremental dynamic analysis (IDA). Comparisons are made with linear time history analysis results. The results presented suggest that simplified linear elastic analysis based on inelastic design spectra could produce very inaccurate estimates of the structural behavior of SCC bridges with dual load path.

An Analysis on the Stability for Pylon Types of Cable-Stayed Bridge (사장교 주탑 형상에 따른 안정해석)

  • 임정열;윤영만;안주옥
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.246-252
    • /
    • 2000
  • The nonlinearity of a cable-stayed bridge results in the large displacement of main girder due to a long span, the large axial forces reduce the catenary action of cables and the flexural stiffness. Therefore, the static and dynamic behavior of pylon for a cable-stayed bridge plays an important role in determining its safety. This study was performed to find the behavior of pylon of cable-stayed bridge for the first-order analysis considering of axial load only and for the second-order analysis considering of lateral deflection due to axial load. The axial force and moment values of pylon were different from the results of the first-order analysis and second-order analysis according to pylon shape and cross beam stiffness when the pylon was subjected to earthquake and wind loads. In the second-order analysis, comparing the numerical values of the member forces for the dynamic analysis, types 3 and 4 (A type) were relatively more advantageons types than types 1 and 2 (H type). Considering the stability for pylon of cable-stayed bridge (whole structural system), types 3 and 4 (A type) with pre-buckling of girder were proper types than types 1 and 2 (H type) with buckling of pylon.

  • PDF