• Title/Summary/Keyword: earthquake engineering

Search Result 4,849, Processing Time 0.034 seconds

The effects of vertical earthquake motion on an R/C structure

  • Bas, Selcuk;Kalkan, Ilker
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.719-737
    • /
    • 2016
  • The present study investigated the earthquake behavior of R/C structures considering the vertical earthquake motion with the help of a comparative study. For this aim, the linear time-history analyses of a high-rise R/C structure designed according to TSC-2007 requirements were conducted including and excluding the vertical earthquake motion. Earthquake records used in the analyses were selected based on the ratio of vertical peak acceleration to horizontal peak acceleration (V/H). The frequency-domain analyses of the earthquake records were also performed to compare the dominant frequency of the records with that of the structure. Based on the results obtained from the time-history analyses under the earthquake loading with (H+V) and without the vertical earthquake motion (H), the value of the overturning moment and the top-story vertical displacement were found to relatively increase when considering the vertical earthquake motion. The base shear force was also affected by this motion; however, its increase was lower compared to the overturning moment and the top-story vertical displacement. The other two parameters, the top-story lateral displacement and the top-story rotation angle, barely changed under H and H+V loading cases. Modal damping ratios and their variations in horizontal and vertical directions were also estimated using response acceleration records. No significant change in the horizontal damping ratio was observed whereas the vertical modal damping ratio noticeably increased under H+V loading. The results obtained from this study indicate that the desired structural earthquake performance cannot be provided under H+V loading due to the excessive increase in the overturning moment, and that the vertical damping ratio should be estimated considering the vertical earthquake motion.

A methodology for design of metallic dampers in retrofit of earthquake-damaged frame

  • Zhang, Chao;Zhou, Yun;Weng, Da G.;Lu, De H.;Wu, Cong X.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.569-588
    • /
    • 2015
  • A comprehensive methodology is proposed for design of metallic dampers in seismic retrofit of earthquake-damaged frame structures. It is assumed that the metallic dampers remain elastic and only provide stiffness during frequent earthquake (i.e., earthquake with a 63% probability of exceedance in 50-year service period), while in precautionary earthquake (i.e., earthquake with a 10% probability of exceedance in 50-year service period), the metallic dampers yield before the main frame and dissipate most of the seismic energy to either prevent or minimize structural damages. Therefore by converting multi-story frame to an equivalent single-degree-of-freedom system, the added stiffness provided by metallic dampers is designed to control elastic story drifts within code-based demand under frequent earthquake, and the added damping with the combination of added stiffness influences is obtained to control structural stress within performance-based target under precautionary earthquake. With the equivalent added damping ratio, the expected damping forces provided by metallic dampers can be calculated to carry out the configuration and design of metallic dampers along with supporting braces. Based on a detailed example for retrofit of an earthquake-damaged reinforced concrete frame by using metallic dampers, the proposed design procedure is demonstrated to be simple and practical, which can not only meet current China's design codes but also be used in retrofit design of earthquake-damaged frame with metallic damper for reaching desirable performance objective.

Construction failures of masonry and adobe buildings during the 2011 Van earthquakes in Turkey

  • Sayin, Erkut;Yon, Burak;Calayir, Yusuf;Gor, Mesut
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.503-518
    • /
    • 2014
  • On October 23, 2011, an earthquake of magnitude 7.0 struck Van, Turkey. This powerful earthquake caused the deaths of 604 people, more than 2,000 injuries, and a considerable loss of property. After this devastating earthquake, on November 9, 2011, another earthquake of magnitude 5.7 occurred. This moderate earthquake caused the deaths of 40 people. Partial and total collapse of the masonry and adobe buildings occurred in the rural areas of Van. In this paper, the acceleration records and response spectrums of the earthquakes were given and the structural deficiencies and reasons of the failures of the rural buildings were evaluated according to the Turkish Seismic Code. The observed failures showed that low quality of structural materials, poor workmanship, lack of engineering services and insufficient detailing of the structural elements are the main reasons of damages.

Earthquake Loss Estimation of Buried Pipeline Considering Permanent Ground Deformation due to Liquefaction (액상화.영구지반변형을 고려한 지중매설관로의 지진피해 평가)

  • Kim, Tae-Wook;Lim, Yun-Mook;Kim, Moon-Kyum
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.102-109
    • /
    • 2005
  • In this study, a prototype model of earthquake loss estimation method will be proposed for the quantitative and qualitative damage evaluation of buried pipeline subjected to Permanent Ground Deformation(PGD) due to liquefaction. With this objective, domestic and foreign status of the arts related with earthquake loss estimation method is summarized at first. Domestic development of computer aided earthquake loss estimation method seems to be difficult for the time being. Thus, referring to HAZUS : Earthquake Loss Estimation Methodology which is developed by FEMA (Federal Emergency Management Agency) and NIBS (National Institute of Building Sciences), earthquake loss estimation procedure of buried pipeline subjected to PGD due to liquefaction are proposed, and then exemplary loss estimation are executed. Considering that there have been no practical earthquake loss estimation method and procedure in Korea, the research accomplishments such as above are considered to be helpful for the substantial development of earthquake loss estimation method of buried pipeline subjected to PGD due to liquefaction.

  • PDF

Simulation of Artificial Earthquake Wave Compatible with Seismic Design Spectrum and Its Response Characteristics (내진 설계용 스펙트럼에 적합한 인공지진파의 작성과 응답 특성)

  • Jun, Dae-Han;Kang, Pyeong-Doo;Kim, Jae-Ung
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.141-148
    • /
    • 2006
  • This study describes a generation of artificial earthquake wane compatible with seismic design spectrum. In seismic response analysis of building structures, the input ground accelerations have considerable effect on dynamic characteristics of structures. Therefore, it is important to properly select input ground motions for seismic response analysis. In this paper, the artificial earthquake wave are generated according to previously recorded earthquake waves in past earthquake events. The artificial wave have identical phase angles to the recorded earthquake wane, and their overall response spectra are compatible with seismic design spectrum with 5% of critical viscous damping. Each simulated earthquake wave has a identical phase angles to the original recorded ground acceleration, and match to design response spectra in the range of period from 0.02 to 10.0 seconds. It is concluded that the artificial earthquake waves simulated in this paper ate applicable as input ground motions for a seismic response analysis of building structures.

  • PDF

Artificial Generation of Seismic Wave Reflecting Information (위상특성을 반영한 인공지진파 작성)

  • 연관희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.91-97
    • /
    • 2000
  • Once a response spectrum is estimated for the site, if there is a need of generating realistic earthquakes time histories considering seismic sources and path effects, one alternative is to use statistical phase characteristics based on real earthquake records other than assuming arbitrary duration and envelope curves. In this study, statistics of group delay times derived from Japanese strong earthquake data were used for phase generation to fully capture the stochastic property of earthquakes. The result shows that simulated earthquake time histories can be generated according to earthquake magnitude and distances with target response spectrum.

  • PDF

Numerical Analysis for Buried Box Structures during Earthquake (지중 박스구조물의 지진시 거동 해석)

  • 박성진
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.108-115
    • /
    • 2000
  • Numerical analysis of slop stability is presented using seismic displacement, response seismic coefficient, and earthquake response analysis methods. In seismic displacement and response seismic coefficient methods, horizontal static seismic force is considered as 0.2g while vertical static seismic force is not considered in analysis. For earthquake response analysis Hahinoha-wave is applied, It is found from result that analysis using response seismic coefficient method is much more conservative than that using seismic displacement method Also, analysis result using earthquake response analysis method is somewhat less conservative about 25% when compared with that using seismic displacement method.

  • PDF

Incorporation of collapse safety margin into direct earthquake loss estimate

  • Xian, Lina;He, Zheng;Ou, Xiaoying
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.429-450
    • /
    • 2016
  • An attempt has been made to incorporate the concept of collapse safety margin into the procedures proposed in the performance-based earthquake engineering (PBEE) framework for direct earthquake loss estimation, in which the collapse probability curve obtained from incremental dynamic analysis (IDA) is mathematically characterized with the S-type fitting model. The regressive collapse probability curve is then used to identify non-collapse cases and collapse cases. With the assumed lognormal probability distribution for non-collapse damage indexes, the expected direct earthquake loss ratio is calculated from the weighted average over several damage states for non-collapse cases. Collapse safety margin is shown to be strongly related with sustained damage endurance of structures. Such endurance exhibits a strong link with expected direct earthquake loss. The results from the case study on three concrete frames indicate that increase in cross section cannot always achieve a more desirable output of collapse safety margin and less direct earthquake loss. It is a more effective way to acquire wider collapse safety margin and less direct earthquake loss through proper enhancement of reinforcement in structural components. Interestingly, total expected direct earthquake loss ratio seems to be insensitive a change in cross section. It has demonstrated a consistent correlation with collapse safety margin. The results also indicates that, if direct economic loss is seriously concerned, it is of much significance to reduce the probability of occurrence of moderate and even severe damage, as well as the probability of structural collapse.

January 24, 2020 Sivrice Earthquake and the response of the masonry Haci Yusuf Tas (New) mosque

  • Firat, Fatih K.;Ural, Ali;Kara, Mehmet E.
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.331-343
    • /
    • 2022
  • Masonry structures are the most common structural systems that have been used almost all over the world from the earliest ages of history to the present day. These structural systems are often unfavorably affected by natural disasters such as earthquakes. The main reason for this is that they are built without sufficient engineering knowledge. On January 24, 2020, a severe earthquake occurred near the Sivrice District of Elazığ in eastern Turkey. According to the Turkish Directorate of Disaster and Emergency Management (AFAD), the magnitude of the earthquake was 6.8 and the focal depth 8 km. This earthquake caused damage and destruction to the masonry structures used extensively in the region. The Hacı Yusuf Taş (new) mosque in the Malatya city center, located about 64 km from the epicenter of the earthquake, was among the buildings affected by the earthquake. The mosque has smooth-cut stone walls and domes made of brick units. The main dome of the structure was severely damaged during the earthquake. In this study, information about the earthquake is first provided, and the damage to the mosque is then interpreted via photographs. In addition, two separate finite element models were produced, where the current state of mosque and solution suggestions are presented, and response spectrum analyses were carried out. According to these analyses and field observations, a buttress system to the main walls of the structure should be constructed in the direction which has little lateral rigidity.