• Title/Summary/Keyword: earthquake energy

Search Result 908, Processing Time 0.031 seconds

Protective systems for high-technology facilities against microvibration and earthquake

  • Yang, Jann N.;Agrawal, Anil K.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.6
    • /
    • pp.561-575
    • /
    • 2000
  • Microvibration of high technology facilities, such as semiconductor plants and facilities with high precision equipments, due to nearby road and rail traffic has attracted considerable attention recently. In this paper, a preliminary study is conducted for the possible use of various protective systems and their performance for the reduction of microvibration. Simulation results indicate that passive base isolation systems, hybrid base isolation systems, passive floor isolation systems, and hybrid floor isolation systems are quite effective and practical. In particular, the performances of hybrid floor isolation systems are remarkable. Further, passive energy dissipation systems are not effective for the reduction of microvibration. Finally, the protections against both microvibration and earthquake are also investigated and presented.

Seismic upgrading of structures with different retrofitting methods

  • Guneyisi, Esra Mete;Azez, Ibrahim
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.589-611
    • /
    • 2016
  • This paper presents an analytical study aimed at evaluating the seismic performance of steel moment resisting frames (MRFs) retrofitted with different approaches. For this, 3, 6 and 12 storey MRFs having four equal bays of 5 m were selected as the case study models. The models were designed with lateral stiffness insufficient to satisfy code drift and hinge limitations in zones with high seismic hazard. Three different retrofit strategies including traditional diagonal bracing system and energy dissipation devices such as buckling restrained braces and viscoelastic dampers were used for seismic upgrading of the existing structures. In the nonlinear time history analysis, a set of ground motions representative of the design earthquake with 10% exceedance probability in fifty years was taken into consideration. Considering the local and global deformations, the results in terms of inter-storey drift index, global damage index, plastic hinge formations, base shear demand and roof drift time history were compared. It was observed that both buckling-restrained braces and viscoelastic dampers allowed for an efficient reduction in the demands of the upgraded frames as compared to traditional braces.

Effects of pulse-like nature of forward directivity ground motions on the seismic behavior of steel moment frames

  • Mansouri, Iman;Shahbazi, Shahrokh;Hu, Jong Wan;Moghaddam, Salar Arian
    • Earthquakes and Structures
    • /
    • v.17 no.1
    • /
    • pp.1-15
    • /
    • 2019
  • In the structures with high level of ductility, the earthquake energy dissipation in structural components is an important factor that describes their seismic behavior. Since the connection details play a major role in the ductile behavior of structure, in this paper, the seismic response of 3-, 5- and 8-story steel special moment frames (SMFs) is investigated by considering the effects of panel zone modeling and the influence of forward-directivity near-field ground motions. To provide a reasonable comparison, selected records of both near and far-field are used in the nonlinear time-history analysis of models. The results of the comparison of the median maximum inter-story drift under excitation by near-field (NF) records and the far-field (FF) ground motions show that the inter-story drift demands can be obtained 3.47, 4.86 and 5.92 times in 3-, 5- and 8-story structures, respectively, undergoing near-field earthquakes.

Experimental study on cyclic behavior of reinforced concrete parallel redundancy walls

  • Lua, Yiqiu;Huang, Liang
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1177-1191
    • /
    • 2014
  • Reinforced concrete (RC) shear walls are one of the most commonly used lateral-load resisting systems in high-rise buildings. RC Parallel redundancy walls studied herein consist of two parts nested to each other. These two parts have different mechanical behaviors and energy dissipation mechanisms. In this paper, experimental studies of four 1/2-scale specimens representing this concept, which are subjected to in-plane cyclic loading, are presented and test results are discussed. Two specimens consist of a wall frame with barbell-shaped walls embedded in it, and the other two consist of a wall frame and braced walls nested each other. The research mainly focuses on the failure mechanism, strength, hysteresis loop, energy dissipation capacity and stiffness of these walls. Results show that the RC parallel redundancy wall is an efficient lateral load resisting component that acts as a "dual" system with good ductility and energy dissipation capacity. One main part absorbs a greater degree of the energy exerted by an earthquake and fails first, whereas the other part can still behave as an independent role in bearing loads after earthquakes.

Study of Extensive air shower simulation

  • Roh, Soon-Young;Kim, Ji-Hee;Ryu, Dong-Su;Kang, Hye-Sung;Kasahara, Katuaki;Kido, Eiji;Taketa, Akimichi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.57.2-57.2
    • /
    • 2010
  • Cosmic rays with energy exceeding 10^18eV are referred to as Ultra high energy cosmic rays (UHECRs). UHECR experiments have utilized air shower simulations to estimate the properties of cosmic rays. Telescope array (TA) experiment has used COSMOS and CORSIKA mainly; the Monte Carlo codes of CORSIKA and COSMOS simulate the evolution of extensive air showers in the atmosphere initiated by photons, hadrons or nuclei UHECRs. We compare the simulations from CORSIKA and COSMOS. Comparison has shown noticeable differences at the ground distributions, longitudinal distributions, Calorimetric energy, and Xmax value. The implications of our results are discussed.

  • PDF

Parametric study for buildings with combined displacement-dependent and velocity-dependent energy dissipation devices

  • Pong, W.S.;Tsai, C.S.;Chen, Ching-Shyang;Chen, Kuei-Chi
    • Structural Engineering and Mechanics
    • /
    • v.14 no.1
    • /
    • pp.85-98
    • /
    • 2002
  • The use of supplemental damping to dissipate seismic energy is one of the most economical and effective ways to mitigate the effects of earthquakes on structures. Both displacement-dependent and velocity-dependent devices dissipate earthquake-induced energy effectively. Combining displacement-dependent and velocity-dependent devices for seismic mitigation of structures minimizes the shortcomings of individual dampers, and is the most economical solution for seismic mitigation. However, there are few publications related to the optimum distributions of combined devices in a multiple-bay frame building. In this paper, the effectiveness of a building consisting of multiple bags equipped with combined displacement-dependent and velocity-dependent devices is investigated. A four-story building with six bays was selected as an example to examine the efficiency of the proposed combination methods. The parametric study shows that appropriate arrangements of different kinds of devices make the devices more efficient and economical.

Seismic behavior of properly designed CBFs equipped with NiTi SMA braces

  • Qiu, Canxing;Zhang, Yichen;Qi, Jian;Li, Han
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.479-491
    • /
    • 2018
  • Shape memory alloys (SMA) exhibit superelasticity which refers to the capability of entirely recovering large deformation upon removal of applied forces and dissipating input energy during the cyclic loading reversals when the environment is above the austenite finish temperature. This property is increasingly favored by the earthquake engineering community, which is currently developing resilient structures with prompt recovery and affordable repair cost after earthquakes. Compared with the other SMAs, NiTi SMAs are widely deemed as the most promising candidate in earthquake engineering. This paper contributes to evaluate the seismic performance of properly designed concentrically braced frames (CBFs) equipped with NiTi SMA braces under earthquake ground motions corresponding to frequently-occurred, design-basis and maximum-considered earthquakes. An ad hoc seismic design approach that was previously developed for structures with idealized SMAs was introduced to size the building members, by explicitly considering the strain hardening characteristics of NiTi SMA particularly. The design procedure was conducted to compliant with a suite of ground motions associated with the hazard level of design-basis earthquake. A total of four six-story CBFs were designed by setting different ductility demands for SMA braces while designating with a same interstory drift target for the structural systems. The analytical results show that all the designed frames successfully met the prescribed seismic performance objectives, including targeted maximum interstory drift, uniform deformation demand over building height, eliminated residual deformation, controlled floor acceleration, and slight damage in the main frame. In addition, this study indicates that the strain hardening behavior does not necessarily impose undesirable impact on the global seismic performance of CBFs with SMA braces.

Elasto-plastic time history analysis of a 117-story high structure

  • Wu, Xiaohan;Li, Yimiao;Zhang, Yunlei
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.7-17
    • /
    • 2017
  • In Chinese Design Codes, for super high-rise buildings with complex structural distribution, which are regarded as code-exceeding buildings, elasto-plastic time history analysis is needed to validate the requirement of "no collapse under rare earthquake". In this paper, a 117-story super high-rise building is discussed. It has a height of 597 m and a height-width ratio of 9.5, which have both exceeded the limitations stipulated by the Chinese Design Codes. Mega columns adopted in this structure have cross section area of about $45m^2$ at the bottom, which is infrequent in practical projects. NosaCAD and Perform-3D, both widely used in nonlinear analyses, were chosen in this study, with which two model were established and analyzed, respectively. Elasto-plastic time history analysis was conducted to look into its seismic behavior, emphasizing on the stress state and deformation abilities under intensive seismic excitation.From the comparisons on the results under rare earthquake obtained from NosaCAD and Perform-3D, the overall responses such as roof displacement, inter story drift, base shear and damage pattern of the whole structure from each software show agreement to an extent. Besides, the deformation of the structure is below the limitation of the Chinese Codes, the time sequence and distribution of damages on core tubes are reasonable, and can dissipate certain inputted energy, which indicates that the structure can meet the requirement of "no collapse under rare earthquake".

Design of Unbend Braces to Satisfy Given Performance Acceptance Criteria (성능수준 만족을 위한 가새헝 소성 감쇠기의 설계)

  • 김진구;김유경;최현훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.6
    • /
    • pp.47-54
    • /
    • 2001
  • Unbond brace hysteretic dampers are generally used to prevent or decrease structural damage in building structures subjected to strong earthquake by its energy dissipating hysteretic behavior. In the study, a straightforward design procedure for unbond brace hysteretic dampers was developed. The required amount of equivalent damping to satisfy given performance acceptance criteria was obtained conveniently based on the capacity spectrum method without carrying out time-consuming nonlinear dynamic time history analysis. Then the size of the unbond braces is determined from the required equivalent damping. Parametric study has been performed for the design variables such as natural period, yield strength, the stiffness after the first yield stress of the unbond brace. The procedure was applied to 5-story and 10-story steel frames for verification of the proposed method. According to the earthquake time history analysis results, the maximum displacement of the model structure with unbond braces supplied in accordance with the proposed method corresponds well with the given target displacement.

  • PDF

Seismic Response Control of Adjacent Structures by Semi-Active Fuzzy Control of Magneto-Rheological Damper (MR 감쇠기의 준능동 퍼지제어기법을 이용한 인접구조물의 지진응답제어)

  • Kim, Min-Seob;Ok, Seung-Yong;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.39-50
    • /
    • 2009
  • In this paper, a method for reducing seismic responses of adjacent buildings is studied that involves connecting two buildings with energy-dissipating devices, such as MR dampers. For the vibration control of the adjacent buildings, a fuzzy control technique with semi-active MR dampers is proposed. A fuzzy controller, which can appropriately modulate the damping forces by controlling the input voltage in real time, is designed according to the proposed method. To verify the validity of the proposed method, numerical simulations are performed. In the numerical simulations, historical earthquake records with diverse frequency contents and different peak values are used. For the purpose of comparison, an uncontrolled system, a passive control system and a semi-active fuzzy control system are considered. The comparative results prove the effectiveness of the proposed control technique, i.e. the numerical results show that the fuzzy controlled semi-active MR dampers can effectively reduce the earthquake responses of the adjacent structures.