• Title/Summary/Keyword: earthquake energy

Search Result 908, Processing Time 0.032 seconds

Experimental research on seismic behavior of steel reinforced high-strength concrete short columns

  • Zhu, Weiqing;Jia, Jinqing;Zhang, Junguang
    • Steel and Composite Structures
    • /
    • v.25 no.5
    • /
    • pp.603-615
    • /
    • 2017
  • This experimental research presents the seismic performance of steel reinforced high-strength concrete (SRHC) short columns. Eleven SRHC column specimens were tested under simulated earthquake loading conditions, including six short column specimens and five normal column specimens. The parameters studied included the axial load level, stirrup details and shear span ratio. The failure modes, critical region length, energy dissipation capacity and deformation capacity, stiffness and strength degradation and shear displacement of SRHC short columns were analyzed in detail. The effects of the parameters on seismic performance were discussed. The test results showed that SRHC short columns exhibited shear-flexure failure characteristics. The critical region length of SRHC short columns could be taken as the whole column height, regardless of axial load level. In comparison to SRHC normal columns, SRHC short columns had weaker energy dissipation capacity and deformation capacity, and experienced faster stiffness degradation and strength degradation. The decrease in energy dissipation and deformation capacity due to the decreasing shear span ratio was more serious when the axial load level was higher. However, SRHC short columns confined by multiple stirrups might possess good seismic behavior with enough deformation capacity (ultimate drift ratio ${\geq}2.5%$), even though a relative large axial load ratio (= 0.38) and relative small structural steel ratio (= 3.58%) were used, and were suitable to be used in tall buildings in earthquake regions.

Performance of Seismic Retrofit According to the Stiffness and Strength Ratios of Steel Damper to Reinforced Concrete Frame (철근콘크리트 골조와 강재댐퍼의 강성비 및 내력비에 따른 내진보강 성능)

  • Baek, Eun Lim;Oh, Sang Hoon;Lee, Sang Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.171-180
    • /
    • 2013
  • The purpose of this study is to evaluate the effectiveness of the seismic retrofit performance for a reinforced concrete structure with steel damper. The nonlinear static analysis of the RC frame specimens with and without retrofit using the steel damper was conducted and the reliability of the analysis was verified by comparing the analysis and test results. Using this analysis model and method, additional nonlinear analysis was conducted considering varying stiffness and strength ratios between RC frame and steel damper and the failure mode of RC frame. As the result of the study, the total absorbed energy increased and the damage of RC frame was reduced as stiffness and strength ratios increased. The seismic retrofit performance, evaluated by means of the yield strength, increasing ratio of the absorbed energy and damage of the frame, increased linear proportionally with the increase of the strength ratio. In addition, the seismic retrofit performance was stable for stiffness ratios larger than 4~5. The energy absorption capacity of the frame governed by shear failure was better than that of the frame governed by flexure failure.

Seismic Behavior of High-Strength Concrete Square Short Columns Confined in Thin Steel Shell

  • Han, Byung-Chan;Yun, Hyun-Do;Chung, Soo-Young
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.23-34
    • /
    • 2000
  • Experiments were carried out to investigate the seismic behaviors, such as lateral strength, ductility and energy-dissipation capacity. of high-strength concrete (HSC) square short column confined in thin steel shell. The primary objective of the study was to investigate the suitability of using HSC square columns confined in thin steel shell in region of moderate-to-high seismic risk. A total of six columns, consisting of two ordinarily reinforced concrete square short columns and four reinforced concrete square short columns confined in thin steel shell was tested. Column specimens, short columns in a moment resisting frame with girder. were tested under a constant axial and reversed cyclic lateral loads. To design the specimens. transverse reinforcing methods, level of axial load applied, and the steel tube width-thickness ratio (D/t) were chosen as main parameters. Test results were also discussed and compared in the light of improvements in general behaviors, ductility, and energy-absorption capacities. Compared to conventionally reinforced concrete columns, the HSC columns confined in thin steel shell had similar load-displacement hysteretic behavior but exhibited greater energy-dissipation characteristics . It is concluded that, in strong earthquake areas, the transverse reinforcing method by using a thin steel shell (D/t=125) is quite effective to make HSC short columns with very strong and ductile.

  • PDF

Nondestructive Damage Identification in a Truss Structure Using Time Domain Responses (시간영역의 응답을 사용한 트러스 구조물의 비파괴 손상평가)

  • Choi, Sang-Hyun;Park, Soo-Yong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.89-95
    • /
    • 2003
  • In this paper, an algorithm to locate and size damage in a complex truss structure using the time domain response is presented. Sampled response data for specific time interval is spatially expanded over the structure to obtain the mean train energy for each element of the structure. The mean strain energy for each element is, in turn, used to build a damage index that represents the ratio of the stiffness parameter of the pre-damaged to the post-damaged structure. The validity of the methodology is demonstrated using data from a numerical example of a space truss structure with simulated damage. Also in the example, the effects of noisy data on the proposed algorithm are examined by adding random noised to the response data.

Evaluation of ground motion scaling methods on drift demands of energy-based plastic designed steel frames under near-fault pulse-type earthquakes

  • Ganjavi, Behnoud;Hadinejad, Amirali;Jafarieh, Amir Hossein
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.91-110
    • /
    • 2019
  • In the present study, the effects of six different ground motion scaling methods on inelastic response of nonlinear steel moment frames (SMFs) are studied. The frames were designed using energy-based PBPD approach with the design concept using pre-selected target drift and yield mechanism as performance limit state. Two target spectrums are considered: maximum credible earthquake spectrum (MCE) and design response spectrum (DRS). In order to investigate the effects of ground motion scaling methods on the response of the structures, totally 3216 nonlinear models including three frames with 4, 8 and 16 stories are designed using PBPD approach and then they are subjected to ensembles of ground motions including 42 far-fault and 90 near-fault pulse-type records which were scaled using the six different scaling methods in accordance to the two aforementioned target spectrums. The distributions of maximum inter-story drift over the height of the structures are computed and compared. Finally, the efficiency and reliability of each ground motion scaling method to estimate the maximum nonlinear inter-story drift of special steel moment frames designed by energy-based PBPD approach are statistically investigated, and the most suitable scaling methods with the lowest dispersion for two groups of earthquake ground motions are introduced.

Application of an extended Bouc-Wen model for hysteretic behavior of the RC structure with SCEBs

  • Dong, Huihui;Han, Qiang;Du, Xiuli
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.683-697
    • /
    • 2019
  • The reinforced concrete (RC) structures usually suffer large residual displacements under strong motions. The large residual displacements may substantially reduce the anti-seismic capacity of structures during the aftershock and increase the difficulty and cost of structural repair after an earthquake. To reduce the adverse residual displacement, several self-centering energy dissipation braces (SCEBs) have been proposed to be installed to the RC structures. To investigate the seismic responses of the RC structures with SCEBs under the earthquake excitation, an extended Bouc-Wen model with degradation and self-centering effects is developed in this study. The extended model realized by MATLAB/Simulink program is able to capture the hysteretic characteristics of the RC structures with SCEBs, such as the energy dissipation and the degradation, especially the self-centering effect. The predicted hysteretic behavior of the RC structures with SCEBs based on the extended model, which used the unscented Kalman filter (UKF) for parameter identification, is compared with the experimental results. Comparison results show that the predicted hysteretic curves can be in good agreement with the experimental results. The nonlinear dynamic analyses using the extended model are then carried out to explore the seismic performance of the RC structures with SCEBs. The analysis results demonstrate that the SCEB can effectively reduce the residual displacements of the RC structures, but slightly increase the acceleration.

Seismic evaluation of self-centering energy dissipating braces using fragility curves

  • Kharrazi, Hossein;Zahrai, Seyed Mehdi
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.679-693
    • /
    • 2020
  • This paper investigates the seismic response of buildings equipped with Self-Centering Energy Dissipating (SCED) braces. Two-dimensional models of 3, 6, 12 and 16-story SCED buildings considering both material and geometric nonlinearities are investigated by carrying out pushover and nonlinear time-history analyses. The response indicators of the buildings are studied for weight-scaled ground motions to represent the Design Basis Earthquake (DBE) level and the Maximum Considered Earthquake (MCE) event. The fragility curves of the buildings for two Immediate Occupancy (IO) and Life Safety (LS) performance levels are developed using Incremental Dynamic Analysis (IDA). Results of the nonlinear response history analyses indicate that the maximum inter-story drift occurs at the taller buildings. The mean peak inter-story drift is less than 2% in both hazard levels. High floor acceleration peaks are observed in all the SCED frames regardless of the building height. The overall ductility and ductility demand increase when the number of stories reduces. The results also showed the residual displacement is negligible for all of case study buildings. The 3 and 6-story buildings exhibit desirable performance in IO and LS performance levels according to fragility curves results, while 12 and 16-story frames show poor performance especially in IO level. The results indicated the SCED braces performance is generally better in lower-rise buildings.

A novel longitudinal seismic self-centering system for RC continuous bridges using SMA rebars and friction dampers

  • Xiang, Nailiang;Jian, Nanyi;Nonaka, Tetsuya
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.435-444
    • /
    • 2022
  • This study proposes a novel longitudinal self-centering earthquake resistant system for reinforced concrete (RC) continuous bridges by using superelastic shape memory alloy (SMA) reinforcement and friction dissipation mechanism. The SMA reinforcing bars are implemented in the fixed piers to provide self-recentering forces, while the friction dampers are used at the movable substructures like end abutments to enhance the energy dissipation of the bridge system. A reasonable balance between self-centering and energy dissipation capacities should be well achieved by properly selecting the parameters of the SMA rebars and friction dampers. A two-span continuous bridge with one fixed pier and two abutments is chosen as a prototype for illustration. Different longitudinal earthquake resistant systems including the proposed one in this study are investigated and compared. The results indicate that compared with the designs of over-dissipation (e.g., excessive friction) and over-self-centering (e.g., pure SMAs), the proposed system with balanced design between self-centering and energy dissipation would perform satisfactorily in controlling both the peak and residual displacement ratios of the bridge system.

Equations for Estimating Energy Dissipation Capacity of Flexure-Dominated RC Members (철근콘크리트 휨재에 대한 에너지 소산능력 산정식의 개발)

  • 엄태성;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.989-1000
    • /
    • 2002
  • As advanced earthquake design methods using nonlinear static analysis are developed, it is required to estimate precisely the cyclic behavior of reinforced concrete members that is characterized by strength, deformability, and energy dissipation. In a recent study, a simplified method which can estimate accurately the energy dissipation capacity of flexure-dominated RC members subjected to repeated cyclic load was developed. Based on the previously developed method, in the present study, simple equations that can be used for calculating the energy dissipation capacity were derived and verified by the comparison with experimental results. Through parametric study using the proposed equations, effects of axial load, reinforcement ratio, rebar arrangement, md ductility on the dissipated energy were investigated. The proposed equations can accurately estimate the energy dissipation capacity compared with the existing empirical equations, and therefore they will be useful for the nonlinear static analysis/design methods.

Early Emergency Responses of the Japan Atomic Energy Agency against the Fukushima Daiichi Nuclear Power Station Accident in 2011

  • Okuno, Hiroshi;Sato, Sohei;Kawakami, Takeshi;Yamamoto, Kazuya;Tanaka, Tadao
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.2
    • /
    • pp.66-79
    • /
    • 2021
  • Background: The Japan Atomic Energy Agency (JAEA) is specified in the Disaster Counter-measures Basic Act as a designated public corporation for dealing with nuclear disasters. Materials and Methods: The Nuclear Emergency Assistance and Training Center (NEAT) was established in 2002 as the activity base providing technical assistance to both national and local governments during nuclear emergencies. The NEAT has a robust structure and utilities and special installations, and it organizes training and exercises. Results and Discussion: Due to an offshore earthquake that caused a devastating tsunami in March 2011, a nuclear accident occurred at the Tokyo Electric Power Company's Fukushima Daiichi Nuclear Power Station. The NEAT responded by conducting off-site environmental radiation monitoring and contamination screening, dispatching special vehicles, offering telephone consultations, and calculating the dispersion of radioactive materials. An examination of the emergency response activities revealed that the organization was prepared for these types of disasters and was able to plan long-term response. Conclusion: As a designated public corporation, the JAEA technically supports the national government, the Fukushima prefectural government, and the Ibaraki prefectural government, all of which responded to the off-site emergencies resulting from the March 2011 Fukushima Daiichi accident