• 제목/요약/키워드: earthquake damages

검색결과 288건 처리시간 0.03초

지진으로 인한 건물 손상 예측 모델의 효율성 분석 (Evaluating the Efficiency of Models for Predicting Seismic Building Damage)

  • 채송화;임유진
    • 정보처리학회 논문지
    • /
    • 제13권5호
    • /
    • pp.217-220
    • /
    • 2024
  • 지진 발생은 정확히 예측하기 어렵고, 이러한 무작위성을 갖는 사건에 대비하여 모든 건물에 내진 설계를 도입하는 것은 현실적으로 어려운 과제이다. 건물의 특징 분석을 통한 건물 손상 예측을 기반으로 건물의 취약점을 보완한다면, 내진 설계를 도입하지 않은 건물에서도 피해를 최소화할 수 있으므로 건물 손상 예측 모델의 효율성을 분석하는 연구가 필요하다. 본 논문에서는 2015년 네팔 대지진으로 인해 손상된 건물 데이터를 활용하여 Random Forest, Extreme Gradient Boosting, LightGBM, CatBoost 기계학습 분류 알고리즘을 사용하여 지진 피해 예측 모델의 정확도를 비교하였다.

지진시 지반침하가 발생한 세립토지반의 불교란시료를 대상으로 한 반복삼축시험의 수행과 국내 액상화 평가법의 제고 (Cyclic Triaxial Test on Undisturbed Sample in the Fine-Grained Soils that Experienced Ground Settlement by Earthquake Loading and Improving Korean Method for Liquefaction Potential Assessment)

  • 최재순;백우현;진윤홍
    • 한국지진공학회논문집
    • /
    • 제28권1호
    • /
    • pp.67-75
    • /
    • 2024
  • In the case of the Pohang earthquake, which had a magnitude of 5.4 in 2017, geotechnical damages such as liquefaction and ground settlement occurred. The need for countermeasures has emerged, and experimental research in the Pohang area has continued. This study collected undisturbed samples from damaged fine-grained soil areas where ground settlement occurred in Pohang. Cyclic tri-axial tests for identifying the dynamic characteristics of soils were performed on the undisturbed samples, and the results were analyzed to determine the cause of ground settlement. As a result of the study, it was determined that in the case of fine-grained soils, ground settlement occurred because the seismic load as an external force was relatively more significant than the shear resistance of the very soft fine-grained soils, rather than due to an increase in excess pore water pressure.

지진발생 대응을 위한 상하수도시설 관리 및 기술 현황에 대한 고찰 (A review on recent advances in water and wastewater treatment facilities management for earthquake disaster response)

  • 박정수;최준석;김극태;윤영한;박재형
    • 상하수도학회지
    • /
    • 제34권1호
    • /
    • pp.9-21
    • /
    • 2020
  • The proper operation and safety management of water and wastewater treatment systems are essential for providing stable water service to the public. However, various natural disasters including floods, large storms, volcano eruptions and earthquakes threaten public water services by causing serious damage to water and wastewater treatment plants and pipeline systems. Korea is known as a country that is relatively safe from earthquakes, but the recent increase in the frequency of earthquakes has increased the need for a proper earthquake management system. Interest in research and the establishment of legal regulations has increased, especially since the large earthquake in Gyeongju in 2016. Currently, earthquakes in Korea are managed by legal regulations and guidelines integrated with other disasters such as floods and large storms. The legal system has long been controlled and relatively well managed, but technical research has made limited progress since it was considered in the past that Korea is safe from earthquake damage. Various technologies, including seismic design and earthquake forecasting, are required to minimize possible damages from earthquakes, so proper research is essential. This paper reviews the current state of technology development and legal management systems to prevent damages and restore water and wastewater treatment systems after earthquakes in Korea and other countries. High technologies such as unmanned aerial vehicles, wireless networks and real-time monitoring systems are already being applied to water and wastewater treatment processes, and to further establish the optimal system for earthquake response in water and wastewater treatment facilities, continuous research in connection with the Fourth Industrial Revolution, including information and communications technologies, is essential.

지진재해예측을 위한 HAZUS와 ShakeMap의 한반도에서의 적용가능성 연구 (A Preliminary Study of the Global Application of HAZUS and ShakeMap for Loss Estimation from a Scenario Earthquake in the Korean Peninsular)

  • 강수영;김광희;김동춘;유해수;민동주;석봉출
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.152-155
    • /
    • 2007
  • Efficiency and limitations of HAZUS-MH, a GIS based systematic and informative system developed by FEMA and NIBS for natural hazard loss estimations, are discussed by means of a pilot study in the Korean Peninsular. Gyeongsang-do has been selected for the test after careful reviews of previous studies including historical and modern seismicity in the peninsular. A ShakeMap for the selected scenario earthquake with magnitude 6.7 in Gyeongju area is prepared. Then, any losses due to the scenario event have been estimated using HAZUS. Results of the pilot test show that the study area may experience significant physical, economic and social damages. Detailed study in the future will provide efficient and crucial information to the decision makers and emergency agents to mitigate any disaster posed by natural hazards.

  • PDF

Structural control of cable-stayed bridges under traveling earthquake wave excitation

  • Raheem, Shehata E Abdel
    • Coupled systems mechanics
    • /
    • 제7권3호
    • /
    • pp.269-280
    • /
    • 2018
  • Post-earthquake damages investigation in past and recent earthquakes has illustrated that the ground motion spatial variation plays an important role in the structural response of long span bridges. For the structural control of seismic-induced vibrations of cable-stayed bridges, it is extremely important to include the effects of the ground motion spatial variation in the analysis for design of an effective control system. The feasibility and efficiency of different vibration control strategies for the cable-stayed bridge under multiple support excitations have been examined to enhance a structure's ability to withstand earthquake excitations. Comparison of the response due to non-uniform input ground motion with that due to uniform input demonstrates the importance of accounting for spatial variability of excitations. The performance of the optimized designed control systems for uniform input excitations gets worse dramatically over almost all of the evaluation criteria under multiple-support excitations.

Performance of multi-storey structures with high damping rubber bearing base isolation systems

  • Karabork, Turan
    • Structural Engineering and Mechanics
    • /
    • 제39권3호
    • /
    • pp.399-410
    • /
    • 2011
  • Base isolation, having quite simple contents, aims to protect the buildings from earthquake-induced damages by installing structural components having low horizontal stiffness between substructure and superstructure. In this study, an appropriate base isolation system for 2-D reinforced concrete frame is investigated. For different structural heights, the structural systems of 2, 3 and 4 bays are modeled by applying base isolation systems and results are compared with conventional structural systems. 1999 Marmara earthquake data is used for applying the model by time history method in SAP2000 package. Results of various parameters such as base shear force, structure drift ratio, structure period and superstructure acceleration are discussed for all models.

Seismic Scenario Simulation and Its Applications on Risk Management in Taiwan

  • Yeh, Chin-Hsun
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2009년도 정기 학술발표대회
    • /
    • pp.13-24
    • /
    • 2009
  • This paper introduces various kinds of applications of the scenario-based seismic risk assessment in Taiwan. Seismic scenario simulation (SSS) is a GIS-based technique to assess distribution of ground shaking intensity, soil liquefaction probability, building damages and associated casualties, interruption of lifeline systems, economic losses, etc. given source parameters of an earthquake. The SSS may integrate with rapid earthquake information release system to obtain valuable information and to assist in decision-making processes to dispatch rescue and medical resources efficiently. The SSS may also integrate with probabilistic seismic hazard analysis to evaluate various kinds of risk estimates, such as average annual loss and probable maximum loss in one event, in a probabilistic sense and to help proposing feasible countermeasures.

  • PDF

빌딩피해에 대한 GIS 손상평가 및 지진 후 평가 (GIS-based Loss Estimation and Post-earthquake Assessment of Building Damage)

  • 전상수
    • 한국지반공학회논문집
    • /
    • 제20권7호
    • /
    • pp.15-24
    • /
    • 2004
  • 본 논문은 1994 Northridge 지진에 의해 발생된 주거건물손상에 관하여 건물 교체시의 가격에 대한 상대적 수리비용의 개념으로 GIS기반의 손상평가에 관하여 기술하였다. 빌딩손상은 164개의 서로 다른 지역에서 얻어진 지진기록으로부터 유도된 지진매개변수와 빌딩위치 및 안전조사보고서를 바탕으로 평가하였다. 본 논문은 가장 심한 건물피해를 받은 위치를 규명하는 인식 알고리즘이 GIS를 통하여 개발되었다. 이러한 알고리즘은 지진 후 신속한 응급조치와 위성으로부터 얻어진 데이터를 짧은 시간에 분석할 수 있는 프레임을 제공한다.

A preliminary case study of resilience and performance of rehabilitated buildings subjected to earthquakes

  • Hadigheh, S. Ali;Mahini, S. Saeed;Setunge, Sujeeva;Mahin, Stephen A.
    • Earthquakes and Structures
    • /
    • 제11권6호
    • /
    • pp.967-982
    • /
    • 2016
  • Current codes design the buildings based on life safety criteria. In a performance-based design (PBD) approach, decisions are made based on demands, such as target displacement and performance of structure in use. This type of design prevents loss of life but does not limit damages or maintain functionality. As a newly developed method, resilience-based design (RBD) aims to maintain functionality of buildings and provide liveable conditions after strong ground movement. In this paper, the seismic performance of plain and strengthened RC frames (an eight-story and two low-rise) is evaluated. In order to evaluate earthquake performance of the frames, the performance points of the frames are calculated by the capacity spectrum method (CSM) of ATC-40. This method estimates earthquake-induced deformation of an inelastic system using a reduced response spectrum. Finally, the seismic performances of the frames are evaluated and the results are compared with a resilience-based design criterion.

기초분리설계를 위한 탄성받침의 동적거동 (Dynamic Behaviour of the LRB for Seismic Isolation Design)

  • 임정순;이희목
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권3호
    • /
    • pp.137-144
    • /
    • 2000
  • Judging from the occasional occurrences of minor and major earthquakes in Korean peninsula, it is generally considered that Korean peninsula is not located in safe zone from earthquake any more. The worldwide damages from earthquake in public buildings such as bridges are also urging the necessity for an appropriate earthquake proof action. The elastomeric bearings have been used in seismic isolation design of bridges. and elastomeric bearings are quite ideal ones which allow movement and rotation in all directions without restraining superstruture. Within the limits of this study on dynamic behavior of the LBR for seismic isolation design, the reaearch results revealed that the Laminated Rubber Bearing(LRB) is useful in bridges for seismic isolation design. In addition, the relationship between the shape factor and compressive strength is linear. It was also found that the compressive strength gets higher as the shape factor increases.

  • PDF