• Title/Summary/Keyword: earthquake damage evaluation system

Search Result 92, Processing Time 0.023 seconds

Damage evaluation of seismic response of structure through time-frequency analysis technique

  • Chen, Wen-Hui;Hseuh, Wen;Loh, Kenneth J.;Loh, Chin-Hsiung
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.2
    • /
    • pp.107-127
    • /
    • 2022
  • Structural health monitoring (SHM) has been related to damage identification with either operational loads or other environmental loading playing a significant complimentary role in terms of structural safety. In this study, a non-parametric method of time frequency analysis on the measurement is used to address the time-frequency representation for modal parameter estimation and system damage identification of structure. The method employs the wavelet decomposition of dynamic data by using the modified complex Morlet wavelet with variable central frequency (MCMW+VCF). Through detail discussion on the selection of model parameter in wavelet analysis, the method is applied to study the dynamic response of both steel structure and reinforced concrete frame under white noise excitation as well as earthquake excitation from shaking table test. Application of the method to building earthquake response measurement is also examined. It is shown that by using the spectrogram generated from MCMW+VCF method, with suitable selected model parameter, one can clearly identify the time-varying modal frequency of the reinforced concrete structure under earthquake excitation. Discussions on the advantages and disadvantages of the method through field experiments are also presented.

Seismic Reliability Evaluation of Electric Power Transmission Systems Considering the Multi-state of Substations (변전소의 다중상태를 고려한 송전시스템의 내진 신뢰성 평가)

  • 고현무;박영준;박원석;조호현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.66-73
    • /
    • 2003
  • The technique for the seismic reliability evaluation of the electric power network is presented. In the previous study, the state of the substations was represented by the bi-state which is classified as failure or survival. However, the hi-state model can result in oversimplified analysis, because substations are worked by the parallel operating system. In this paper, Considering the characteristics of the parallel operating system, the damage of the substation is expressed by the multi-state for the more realistic seismic reliability evaluation. Using Monte-Carlo simulation method, the seismic reliability for Korean 345㎸ electric power network is evaluated. Analysis results show that reliability levels of the network by the multi-state analysis is higher than that by the hi-state analysis and the electric power network in southeastern area of the Korean Peninsular may be vulnerable to earthquakes.

  • PDF

Failure Pattern of Space Frame Pier Structures and Simple Check Method for Seismic Performance (입체 라멘 교각 구조물의 파괴 패턴 및 간이 내진성능 평가법)

    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.97-106
    • /
    • 1999
  • In order to check the necessity of seismic reinforcement for a great number of existing structures effectively, it might be desirable to introduce the multi-step seismic evaluation system. This paper presents close relationships between shear-to-moment capacity ratio of a member and seismic performance of structures concerned through the failure mechanism investigation in the view of geological and structural characteristics. Based on it, the simple seismic performance evaluation method has been proposed and its effectiveness was verified by comparing with the damage condition of structures damaged under Hyogo-Ken Nambu Earthquake.

  • PDF

Evaluation of Response Modification Factore for Earthquake Resistant Design of Moment-Resisting Steel Frames (모멘트-연성 강구조물의 내진설계를 위한 반응수정계수의 평가)

  • 송종걸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.201-208
    • /
    • 1997
  • In most seismic codes such as the Uniform Building Code(UBC), the response modification factor(or the force reduction factor)is used to reflect the capability of a structure in dissipating energy through inelastic behavior. The response modification factor is assigned according to structural system type. Ductile systems such as special moment-resisting steel frames are assigned larger values of the response modification factor, and are consequently designed for smaller seismic design forces. Therefore, structural damage may occur during a severe earthquake. To ensure safety of the structures, the suitability of the response modification factor used in aseismic design procedures shall be evaluated. The object of this study is to develop a method for the evaluating of the response modification factor. The validity of the evaluating method has been examined for several cases of different structures and different earthquake excitations.

  • PDF

Seismic Performance Assessment of RC Bridge Columns using Inelastic Finite Element Analysis (비탄성 유한요소해석을 이용한 철근콘크리트 교각의 내진성능평가)

  • Kim, Tae-Hoon;Chung, Young-Soo;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.63-74
    • /
    • 2005
  • The purpose of this study is to assess the seismic performance of reinforced concrete bridge columns using inelastic finite element analysis. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Damage index aims to provide a means of quantifying numerically the damage in reinforced concrete bridge columns sustained under earthquake loading. The proposed numerical method for the seismic performance assessment of reinforced concrete bridge columns is verified by comparison with reliable experimental results.

Seismic Performance Assessment of Reinforced Concrete Bridge Columns using Nonlinear Finite Element Analysis (비선형 유한요소해석을 이용한 철근콘크리트 교각의 내진성능평가)

  • Kim, Tae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.21-33
    • /
    • 2006
  • The purpose of this study is to assess the seismic performance of reinforced concrete bridge columns using nonlinear finite element analysis. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Damage index aims to provide a means of quantifying numerically the damage in reinforced concrete bridge columns sustained under earthquake loading. The proposed numerical method for the seismic performance assessment of reinforced concrete bridge columns is verified by comparison with reliable experimental results.

Seismic Performance Evaluation of Structures Retrofitted with Viscoelastic-Slit Hybrid Dampers (점탄성-슬릿 복합댐퍼로 보강된 건물의 내진성능평가)

  • Kim, Minsung;Xu, Zhaodong;Kim, Jinkoo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.361-367
    • /
    • 2018
  • This study investigates the seismic performance of a hybrid seismic energy dissipation device composed of a viscoelastic damper and a steel slit damper connected in parallel. A moment-framed structure is designed without seismic load and is retrofitted with the hybrid dampers. The model structure is transformed into an equivalent simplified system to find out optimum story-wise damper distribution pattern using genetic algorithm. The effectiveness of the hybrid damper is investigated by fragility analysis of the structure with and without the dampers. The analysis results show that after seismic retrofit the probability of reaching damage states, especially the complete damage state, of the structure turn out to be significantly reduced.

Expected damage for SDOF systems in soft soil sites: an energy-based approach

  • Quinde, Pablo;Reinoso, Eduardo;Teran-Gilmore, Amador;Ramos, Salvador
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.577-590
    • /
    • 2019
  • The seismic response of structures to strong ground motions is a complex problem that has been studied for decades. However, most of current seismic regulations do not assess the potential level of damage that a structure may undergo during a strong earthquake. This will happen in spite that the design objectives for any structural system are formulated in terms of acceptable levels of damage. In this article, we analyze the expected damage in single-degree-of-freedom systems subjected to long-duration ground motions generated in soft soil sites, such as those located in the lakebed of Mexico City. An energy-based methodology is formulated, under the consideration of input energy as the basis for the evaluation process, to estimate expected damage. The results of the proposed methodology are validated with damage curves established directly with nonlinear dynamic analyses.

A Basic Study on The Seismic Capacity Evaluation and Repair Reinforcement in Cultural Assets : Focused on Wooden Structure Cultural Assets in Korea and Japan (문화재 내진진단과 보수·보강에 관한 기초적인 연구 -한국과 일본의 목조 건조물 문화재를 중심으로-)

  • Hong, Ji-Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.488-495
    • /
    • 2016
  • The purpose of this study is to improve the repair and reinforcement of cultural construction assets made of wood and develop seismic countermeasures. The existing regulations for the earthquake proofing of cultural assets are termed 'Regulations concerning earthquake disasters affecting cultural assets' of the cultural heritage administration, which only specifies the reporting of damage to cultural assets after the occurrence of an earthquake. Since 2013, Korea has been studying the introduction of a seismic evaluation system consisting of experts by referring to the 'Guideline for the diagnosis and reinforcement of important cultural properties in Japan. The earthquake proofing of wooden cultural assets in Japan is assessed by experts using a scoring system similar to the one in Korea, but the system in Japan is managed in three steps, viz. before, during and after the occurrence of the earthquake. In order to extend the existing management system by focusing on the repair of the damage after the occurrence of an earthquake, it is necessary for Korea to cultivate experts for the regular management of cultural assets, establish seismic criteria for them, and introduce a regular management system through a civil organization related to construction. By examining the current status of wooden cultural assets, it is necessary to develop various seismic diagnosis techniques and produce guidelines for the repair and reinforcement of individual wooden cultural construction assets following their identification.

A Study on Evaluation of Horizontal Force of Non-structural Components Considering Predominant Periods of Seismic Waves (지진파 탁월주기를 고려한 비구조요소의 수평설계지진력 평가)

  • Oh, Sang Hoon;Kim, Ju Chan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.267-275
    • /
    • 2020
  • In the event of an earthquake, non-structural components require seismic performance to ensure evacuation routes and to protect lives from falling non-structural components. Accordingly, the seismic design code proposes horizontal force for the design and evaluation of non-structural components. Ground motion observed on each floor is affected by a building's eigen vibration mode. Therefore, the earthquake damage of non-structural components is determined by the characteristics of the non-structural component system and the vibration characteristics of the building. Floor response spectra in the seismic design code are estimated through time history analysis using seismic waves. However, it is difficult to use floor response spectra as a design criterion because of user-specific uncertainties of time history analysis. In addition, considering the response characteristics of high-rise buildings to long-period ground motions, the safety factor of the proposed horizontal force may be low. Therefore, this study carried out the horizontal force review proposed in the seismic design code through dynamic analysis and evaluated the floor response of seismic waves considering buildings and predominant periods of seismic waves.