• Title/Summary/Keyword: earth-anchor

Search Result 93, Processing Time 0.027 seconds

Mathematical Models That Underlie Computer Simulation of the Hook and Line Fishing Gears

  • Gabruk, Victor Ivanovich;Kudakaev, Vasilii Vladimirovich
    • Ocean and Polar Research
    • /
    • v.41 no.1
    • /
    • pp.19-34
    • /
    • 2019
  • The present study obtained universal mathematical models of all elements and characteristics regarding hook and line fishing systems. To describe the hook and line fishing systems on site we used three kinds of coordinate systems: the earth based coordinate system, natural coordinate system, and flow (velocity) coordinate system. Mathematical models presented in this article allow us to define the shape of the fishing gear, the tension of the rope at different points, hydrodynamic resistance, diameter of the hook's wire, immersion depth of the fishing hooks, distance from hooks to the ground and the required lifting force of the floats. These models allow for the performance of computer simulations regarding any kinds of hook and line gears in still water or water where flow occurs.

Application of Dates of Terrestrial Magnetism to Archaeological Remains - Centered on a Charcoal Kiln with Side Window at Maegokdong, Ulsan - (고고유적에 대한 고고지자기연대법의 적용 - 울산 매곡동 유적 측구부탄요에 대한 적용사례를 중심으로 -)

  • Sung, Hyong-Mi
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.12
    • /
    • pp.214-221
    • /
    • 2008
  • Terrestrial magnetism has left traces through residues such as fossils of the terrestrial magnetism as time went by. An analysis of archaeological terrestrial magnetism is an estimation of dates of archaeological remains where baked earth is exposed by measuring the change of the past terrestrial magnetism through thermo-remnant magnetization of baked earth. This paper attempts to apply an analysis of the archaeological terrestrial magnetism to archaeological remains using fourteen soil samples extracted from a charcoal kiln with side window located at the Area Ⅰ of Maegokdong. The date of A.D.440${\pm}$15 the analysis of archaeological terrestrial magnetism came up with gives solid evidence, while an archeological chronicle used arrangements of surrounding artifacts because of the absence of remains and assumed uncertainly that a charcoal kiln with side window was from the three kingdom periods. This analysis of archaeological terrestrial magnetism has come to anchor as a main natural scientific analysis because it relatively easily removes pollutants and comes up with highly reliable results owing to its considerably narrow error tolerance of assumed dates.

Preliminary numerical analysis of controllable prestressed wale system for deep excavation

  • Lee, Chang Il;Kim, Eun Kyum;Park, Jong Sik;Lee, Yong-Joo
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1061-1070
    • /
    • 2018
  • The main purpose of retaining wall methods for deep excavation is to keep the construction site safe from the earth pressure acting on the backfill during the construction period. Currently used retaining wall methods include the common strut method, anchor method, slurry wall method, and raker method. However, these methods have drawbacks such as reduced workspace and intrusion into private property, and thus, efforts are being made to improve them. The most advanced retaining wall method is the prestressed wale system, so far, in which a load corresponding to the earth pressure is applied to the wale by using the tension of a prestressed (PS) strand wire. This system affords advantages such as providing sufficient workspace by lengthening the strut interval and minimizing intrusion into private properties adjacent to the site. However, this system cannot control the tension of the PS strand wire, and thus, it cannot actively cope with changes in the earth pressure due to excavation. This study conducts a preliminary numerical analysis of the field applicability of the controllable prestressed wale system (CPWS) which can adjust the tension of the PS strand wire. For the analysis, back analysis was conducted through two-dimensional (2D) and three-dimensional (3D) numerical analyses based on the field measurement data of the typical strut method, and then, the field applicability of CPWS was examined by comparing the lateral deflection of the wall and adjacent ground surface settlements under the same conditions. In addition, the displacement and settlement of the wall were predicted through numerical analysis while the prestress force of CPWS was varied, and the structural stability was analysed through load tests on model specimens.

Numerical study on the structural stability of the precast joint buttress wall (프리캐스트 조인트 방법을 사용한 부벽식 옹벽의 구조적 안정성에 대한 수치해석 연구)

  • Kim, Joonseok
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.4
    • /
    • pp.366-372
    • /
    • 2016
  • Recently in case of the concrete retaining wall precast technological change in the field assembled by the way. A precast wall is devied into upper and lower respectively, and the way, assembled in field is being performed. But the assembled part could have been damaged by the earth pressure in a relatively high buttress wall. And, it have been pointed out that large-scale disaster can be occurred. Thus, in this thesis, a structural stability for the buttressed retaining wall with pre-cast joint method was analyzed by a numerical analysis method. The structural stability of the three height retaining wall(7.6m, 8.5m, 10m) was conducted respectively for earth pressure. The maximum principal stress applied to the concrete retaining wall was analyzed to occur locally in the vicinity of the fixing anchor as 23.3 ~ 43.2 MPa.

Seismic Design of Sheet Pile Walls Used in Harbor Construction (항만공사에 이용되는 널말뚝의 내진설계)

  • Kim, Hong Taek;Bang, Yoon Kyung;Kang, In Gyu;Cho, Won Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.171-187
    • /
    • 1991
  • In the present study, an analytical solution method is proposed for the seismic design of cantilever sheet pile walls and anchored sheet pile walls used in harbor construction. Seepage pressures, together with a change in magnitudes of effective horizontal soil pressures, are included in the proposed solution method. Also, the Mononobe-Okabe analysis as well as the Westergaard and Matsuo-Ohara theory of hydrodynamic pressures is used in the proposed method. Further, the choice of values for safety factors is examined for the seismic design of anchored sheet pile walls, and the effects of various parameters(dredge line slope, differential in water levels, anchor position, and wall friction angle) on embedment depth, anchor force, and maximum bending moment are analyzed for anchored walls in dense sand deposits. In addition. the tables that could be used for preliminary seismic design of anchored walls in dense sands are presented. The proposed method deals with the sheet pile walls with free earth support.

  • PDF

Deformation Behavior and Slope Stability Effect of Anchored Retention Walls Installed in Cut Slope (절개사면에 설치된 앵커지지 합벽의 변형거동 및 사면안정효과)

  • Hong Won-Pyo;Han Jung-Geun
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.57-64
    • /
    • 2004
  • In order to establish the design method of anchored retention walls in cut slope, the behavior of anchored retention walls and backside ground needs to be investigated and checked in detail. In this study, the behavior of anchored retention walls was investigated by instrumentation installed in cut slope for an apartment construction site stabilized by a row of piles and anchored retention walls. When the anchor was installed at each excavating stages, the horizontal deflection of retention wall decreased, while the horizontal deformation of backside ground increased. The deflection of anchored retention wall decreased as the anchor was prestressed. The prestressed anchor farce has a great effect on the deflection of retention walls, while it has little effect on the deformation of its backside ground. The maximum horizontal deflection of anchored retention walls was developed between $1\%\;and\;4\%$ of excavation depth, which are $2\~8$ times larger than max. horizontal deflection of anchored retention walls including rock layers with backside horizontal ground. Meanwhile, SLOPILE (ver. 3.0) program analyzes the slope stability effects for anchored retention walls. As a result of analysis on slope stability analysis, the lateral earth pressure applied at anchored retention piles could be used as the mean values of empirical lateral pressures using anchored retention wall with horizontal ground at its backside.

Study on the Application of Semi-open cut Top-Down Construction for Framework (세미 오픈컷 역타공법의 현장적용에 관한 연구)

  • Sho, Kwang-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.129-138
    • /
    • 2011
  • Construction methods for underground structure are classified as bottom-up, up-up, and top-down methods depending on the procedure of construction related to a superstructure. In top-down construction methods, building's main structure is built from the ground level downwards by sequentially alternating ground excavation and structure construction. In the mean time, the main structure is also used as supporting structure for earth-retaining wall, which results in the increased stability of the earth-retaining wall due to the minimized deformation in adjacent structures and surrounding grounds. In addition, the method makes it easy to secure a field for construction work in the downtown area by using each floor slabs as working spaces. However top-down construction method is often avoided since an excavation under the slab has low efficiency and difficult environment for work, and high cost compared with earth anchor method. This paper proposes a combined construction method where semi-open cut is selected as excavation work, slurry as earth -retaining wall and CWS as top-down construction method. In the case study targeted for an actual construction project, the proposed method is compared with existing top-down construction method in terms of economic feasibility, construction period and work efficiency. The proposed construction method results in increased work efficiency in the transportation of earth and sand, and steel frame erection, better quality management in PHD construction, and reduced construction period.

Design Charts and Simplified Formulae for Anchored Sheet Pile Wall- Using Equivalent Beam Analysis for Fixed End Supported Wall - (앵커식 널말뚝벽의 설계용 도표와 간편식- 고정지지 널말뚝의 등가보 해석을 사용하여 -)

  • 김기웅;원진오;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.19-30
    • /
    • 2000
  • The major design parameters of the anchored sheet-pile wall include the determination of required penetration depth, the force acting on the anchor, and the maximum bending moment in the piling. Blum solved the fixed earth supported wall using the equivalent beam method, assuming that the wall can be separated into upper and lower parts of the point of contraflexure. Design charts help designer by simplifying the design procedure. But they have some difficulties under some Geotechnical and geometrical conditions. For example, the conventional design charts can compute design parameters only when the ground water table exists above the dredge line. In this paper, the design charts which can be used for the ground water table existing under the dredge line are presented. And simplified formulae are developed by regression analysis. It is found that simplified formulae are not only very useful for the practice of design but also they can evaluate the result of numerical methods or design charts.

  • PDF

Computer Simulation for Working Condition of Undergroundwork Using TOP DOWN Technique (TOP DOWN 지하공사의 작업환경체크 컴퓨터시물레이션에 관한 기초적 연구)

  • 고성석;손기상;심경수
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.96-105
    • /
    • 1995
  • The better industry develops, the more spaces need but in the limited area. Most building become larger and more complicated if the more spaces need in the constant area. And this leads to do underground work in long period generally six(6) months for 6 basement stories due to the selection of TOP DOWN technique. Working environment in this underground area can be problems and should not be overlooked, because air quality in underground spaces become quickly worse. Recently, department name to control construction safety has been changed to ENVIRONMENT & SAFETY TEAM from SAFETY TEAM. This means that it is very important to control against environmental condition at site so much. Overall construction work as well as underground work should conform to the requirement of working environment, particularly against inhabitants around the construction area. Strut protection, one of earth protection method, in case to 40m long strut may become weaker due to thermal stress or its longitudinally compressive strain and the another one, earth anchor protection may not be applied to the site In case of encroaching on vertical underground borderline because of regulation to prohibit it. It is necessary that TOP DOWN technique should be introduced in order to solve the external and internal problem of the site such as difficulty level of the work, potential danger with excavating depth, and shortening workperiod. It is needed that improving way of working condition should be shown and simplified computer simulation program should be also provided for checking pollution level & ventilation, excluding of lighting problem here. Results measured with conformance to the Regulation for Working Environment Measurement, enforced by Ministry of Labor have been applied to the computer program developed here. Sample air taken at unit workplace which was considered as exposing condition of pollutant at breathing point and within a range of behavior of the workers, Identified exposing group in underground work, using Moded Flow Life Finally, three types of ventilation system, type I with blower & ventilator, type II natural supply with mechanical ventilation system, and type I mechanical ventilation with Drivent Fan Unit System are selected for this study.

  • PDF

Analysis of the Impact on Prediction Models Based on Data Scaling and Data Splitting Methods - For Retaining Walls with Ground Anchors Installed (데이터 스케일링과 분할 방식에 따른 예측모델의 영향 분석 - 그라운드 앵커가 설치된 흙막이 벽체 대상)

  • Jun Woo Shin;Heui Soo Han
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.639-655
    • /
    • 2023
  • Recently, there has been a growing demand for underground space, leading to the utilization of earth retaining walls for deep excavations. Earth retaining walls are structures that are susceptible to displacement, and their measurement and management are carried out in accordance with the standards established by the Ministry of Land, Infrastructure, and Transport. However, managing displacement through measurement can be considered similar to post-processing. Therefore, in this study, we not only predicted the horizontal displacement of a retaining wall with ground anchors installed using machine learning, but also analyzed the impact of the prediction model based on data scaling and data splitting methods while learning measurement data using machine learning. Custom splitting was the most suitable method for learning and outputting measurement data. Data scaling demonstrated excellent performance, with an error within 1 and an R-squared value of 0.77 when the anchor tensile force and water pressure were standardized. Additionally, it predicted a negative displacement compared to a model that without scaling.