• Title/Summary/Keyword: earth tide

Search Result 151, Processing Time 0.033 seconds

Feeding by common heterotrophic protist predators on seven Prorocentrum species

  • You, Ji Hyun;Jeong, Hae Jin;Kang, Hee Chang;Ok, Jin Hee;Park, Sang Ah;Lim, An Suk
    • ALGAE
    • /
    • v.35 no.1
    • /
    • pp.61-78
    • /
    • 2020
  • Species belonging to the dinoflagellate genus Prorocentrum are known to cause red tides or harmful algal blooms. To understand the dynamics of a Prorocentrum sp., its growth and mortality due to predation need to be assessed. However, there are only a few Prorocentrum spp. for which heterotrophic protist predators have been reported. We explored feeding by the common heterotrophic dinoflagellates Gyrodinium dominans, Oxyrrhis marina, Pfiesteria piscicida, Oblea rotunda, and Polykrikos kofoidii and the naked ciliate Strombidinopsis sp. (approx. 90 ㎛ cell length) on the planktonic species Prorocentrum triestinum, P. cordatum, P. donghaiense, P. rhathymum, and P. micans as well as the benthic species P. lima and P. hoffmannianum. All heterotrophic protists tested were able to feed on the planktonic prey species. However, O. marina and O. rotunda did not feed on P. lima and P. hoffmannianum, while G. dominans, P. kofoidii, and Strombidinopsis sp. did. The growth and ingestion rates of G. dominans and P. kofoidii on one of the seven Prorocentrum spp. were significantly different from those on other prey species. G. dominans showed the top three highest growth rates when it fed on P. triestinum, P. cordatum, and P. donghaiense, however, P. kofoidii had negative growth rates when fed on these three prey species. In contrast, P. kofoidii had a positive growth rate only when fed on P. hoffmannianum. This differential feeding on Prorocentrum spp. between G. dominans and P. kofoidii may provide different ecological niches and reduce competition between these two common heterotrophic protist predators.

Estimation of bioluminescence intensity of the dinoflagellates Noctiluca scintillans, Polykrikos kofoidii, and Alexandrium mediterraneum populations in Korean waters using cell abundance and water temperature

  • Sang Ah Park;Hae Jin Jeong;Jin Hee Ok;Hee Chang Kang;Ji Hyun You;Se Hee Eom;Yeong Du Yoo;Moo Joon Lee
    • ALGAE
    • /
    • v.39 no.1
    • /
    • pp.1-16
    • /
    • 2024
  • Many dinoflagellates produce bioluminescence. To estimate the intensity of bioluminescence produced by populations of the heterotrophic dinoflagellates Noctiluca scintillans and Polykrikos kofoidii and autotrophic dinoflagellate Alexandrium mediterraneum in Korean waters, we measured cellular bioluminescence intensity as a function of water temperature and calculated population bioluminescence intensity with cell abundances and water temperature. The mean 200-second-integrated bioluminescence intensity per cell (BLcell) of N. scintillans satiated with the chlorophyte Dunaliella salina decreased continuously with increasing water temperature from 5 to 25℃. However, the BLcell of P. kofoidii satiated with the mixotrophic dinoflagellate Alexandrium minutum continuously increased from 5 to 15℃ but decreased at temperatures exceeding this (to 30℃). Similarly, the BLcell of A. mediterraneum continuously increased from 10 to 20℃ but decreased between 20 and 30℃. The difference between highest and lowest BLcell of N. scintillans, P. kofoidii, and A. mediterraneum at the tested water temperatures was 3.5, 11.8, and 21.0 times, respectively, indicating that water temperature clearly affected BLcell. The highest estimated population bioluminescence intensity (BLpopul) of N. scintillans in Korean waters in 1998-2022 was 4.22 × 1013 relative light unit per liter (RLU L-1), which was 1,850 and 554,000 times greater than that of P. kofoidii and A. mediterraneum, respectively. This indicates that N. scintillans populations produced much brighter bioluminescence in Korean waters than the populations of P. kofoidii or A. mediterraneum.

Characteristics of Surface Topography and Sediments before and after the Typhoon Kompasu in the Gochang Open-Coast Intertidal Flat, Korea (태풍 곤파스 전과 후의 고창 개방형 조간대 표층 지형과 퇴적물 특성)

  • Kang, Sol-Ip;Ryang, Woo-Hun;Chun, Seung-Soo
    • Journal of the Korean earth science society
    • /
    • v.40 no.2
    • /
    • pp.149-162
    • /
    • 2019
  • In the macro-tide open coast of the Korean western coast, typhoon effects were investigated in terms of variations on topography, surface sediment, and sedimentary environment, which appeared before and after the typhoon Kompasu of 2010. The Kompasu of small size and strong intensity landed on the southwestern coast of the Korean Peninsula and passed across the inland between September 1st and 2nd in 2010. Topography and surface sediments before and after the typhoon were measured and sampled along the survey line of 22 sites in the Gochang Donghori intertidal flat. The intertidal area was divided into high tidal zone, middle tidal zone, and lower tidal zone on the basis of mean high water level, mean sea level, and mean low water level. Topographic variation before and after the typhoon represented deposition of average 0.03 m in high tidal zone, erosion of average -0.15 m in middle tidal zone, and erosion of average -0.39 m in lower tidal zone, respectively. Surface sediments of the intertidal flat consisted mainly of fine to medium sands, and the ratio of fine sand was the largest both before and after the typhoon. Surface sediments after the typhoon became finer in mean grain size showing well sorting rather than those before the typhoon.

Characteristics of Tide-induced Flow and its Effect on Pollutant Patterns Near the Ocean Outfall of Wastewater Treatment Plants in Jeju Island in Late Spring (제주도 하수처리장 해양방류구 인근해역의 늦은 봄철 조류 특성과 조석잔차류에 의한 오염물질의 분포 특성)

  • KIM, JUN-TECK;HONG, JI-SEOK;MOON, JAE-HONG;KIM, SANG-HYUN;KIM, TAE-HOON;KIM, SOO-KANG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.2
    • /
    • pp.63-81
    • /
    • 2021
  • In this study, we investigated the tide-induced flow patterns near the ocean outfall of the Jeju and Bomok Wastewater Treatment Plants (WTP) in Jeju Island by using measurements of Acoustic Doppler Current Meter (ADCP) and a numerical experiment with inserting passive tracer into a regional ocean model. In late spring of 2018, the ADCP measurements showed that tidal currents dominate the flow patterns as compared to the non-tidal components in the outfall regions. According to harmonic analysis, the dominant type of tides is mixed of diurnal and semi-diurnal but predominantly semidiurnal, showing stronger oscillations in the Jeju WTP than those in the Bomok WTP. The tidal currents oscillate parallel to the isobath in both regions, but the rotating direction is different each other: an anti-clockwise direction in the Jeju WTP and a clockwise in the Bomok WTP. Of particular interest is the finding that the residual current mainly flows toward the coastline across the isobath, especially at the outfall of the Bomok WTP. Our model successfully captures the features of tidal currents observed near the outfall in both regions and indicates possibly high persistent pollutant accumulation along the coasts of Bomok.

The Application of Quantum Yield of Nitrate Uptake to Estimate New Production in Well-Mixed Waters of the Yellow Sea: A Preliminary Result

  • Park, Myung-Gil;Shim, Jae-Hyung;Yang, Sung-Ryull
    • Journal of the korean society of oceanography
    • /
    • v.37 no.1
    • /
    • pp.45-50
    • /
    • 2002
  • New production (NP) values in well-mixed waters of the Yellow Sea were estimated using two different methods and were compared with each other; one is from the quantum yield model of nitrate uptake and chlorophyll ${\alpha}$-specific light absorption coefficient, and the other is from a traditional $^{15}N$-labelled stable isotope uptake technique. The quantum yields of nitrate uptake were highly variable, ranging from 0.0001 to 0.04 mol $NO_3Ein^{-1}$, and the small values in this study might have resulted from either the partitioning into nitrate uptake of little portions of light energy absorbed by phytoplankton or that phytoplankton may predominantly utilize other N sources (E. G. ammonium and/or urea) than nitrate. The estimates (0.54-8.47 nM $h^{-1}$) of NP from the quantum yield model correlated well ($r^2$=0.67, p<0.1) with those (0.01-4.93 nM $h^{-1}$) obtained using the $^{15}NO_3$ uptake technique. To improve the ability of estimating NP values using this model in the Yellow Sea, more data need to be accumulated in the future over a variety of time and space scales.

Extraction and Analysis of Ganghwa Tidal Flat Channels Using TanDEM-X DEM (TanDEM-X DEM을 이용한 강화도 갯벌 조류로 추출과 분석)

  • Yun, Ga-Ram;Kim, Lyn;Kim, Nam-Yeong;Kim, Na-Gyeong;Jang, Yun-Yeong;Choi, Yeong-Jin;Lee, Seung-Kuk
    • The Journal of Engineering Geology
    • /
    • v.32 no.3
    • /
    • pp.411-420
    • /
    • 2022
  • Recently, research using remote sensing has been active in various fields such as environment, science, and society. The results of research using remote sensing are not only numerical results, but also play an important role in solving and preventing social and scientific problems. The purpose of this thesis is to tell the correlation between the data provided and each data by using remote sensing technology for the tidal flat environment. The purpose of this study is to obtain high-resolution data using artificial satellites during remote sensing to find out information on tidal flat currents. Tidal flats created by erosion, sedimentation, low tide, and high tide contain information about the tidal flat slope and information about the ecosystem. Therefore, it can be considered as one of the very important studies to analyze the overall tidal flow channel. This paper creates a DEM (Digital Elevation Model) through TanDEM-X, and DEM is used as the most basic data to create a tidal channel. The research area is a tidal flat located in the middle of the west coast of Ganghwado tidal flat. By analyzing the tidal channel created, various information such as the slope direction of Ganghwado tidal flat and the shape of the tidal channel can be grasped. It is expected that the results of this study will increase the importance and necessity of using DEM data for tidal flat research in the future, and that high-quality results can be obtained.

Effects of temperature on the growth and ingestion rates of the newly described mixotrophic dinoflagellate Yihiella yeosuensis and its two optimal prey species

  • Kang, Hee Chang;Jeong, Hae Jin;Lim, An Suk;Ok, Jin Hee;You, Ji Hyun;Park, Sang Ah;Lee, Sung Yeon;Eom, Se Hee
    • ALGAE
    • /
    • v.35 no.3
    • /
    • pp.263-275
    • /
    • 2020
  • Water temperature is known to affect the growth and feeding of marine dinoflagellates. Each dinoflagellate species grows well at a certain optimal temperature but dies at very cold and hot temperatures. Thus, changes in water temperatures driven by global warming and extremely high or low temperatures can affect the distribution of dinoflagellates. Yihiella yeosuensis is a mixotrophic dinoflagellate that can feed on only the cryptophyte Teleaulax amphioxeia and the chlorophyte Pyramimonas sp. Furthermore, it grows fast mixotrophically but rarely grows photosynthetically. We explored the direct and indirect effects of water temperature on the growth and ingestion rates of Y. yeosuensis feeding on T. amphioxeia and the growth rates of T. amphioxeia and Pyramimonas sp. under 7 different water temperatures (5-35℃). Both the autotrophic and mixotrophic growth rates of Y. yeosuensis on T. amphioxeia were significantly affected by temperature. Under the mixotrophic and autotrophic conditions, Y. yeosuensis survived at 10-25℃, but died at 5℃ and ≥30℃. The maximum mixotrophic growth rate of Y. yeosuensis on T. amphioxeia (1.16 d-1) was achieved at 25℃, whereas the maximum autotrophic growth rate (0.16 d-1) was achieved at 15℃. The maximum ingestion rate of Y. yeosuensis on T. amphioxeia (0.24 ng C predator-1 d-1) was achieved at 25℃. The cells of T. amphioxeia survived at 10-25℃, but died at 5 and ≥30℃. The cells of Pyramimonas sp. survived at 5-25℃, but died at 30℃. The maximum growth rate of T. amphioxeia (0.72 d-1) and Pyramimonas sp. (0.75 d-1) was achieved at 25℃. The abundance of Y. yeosuensis is expected to be high at 25℃, at which its two prey species have their highest growth rates, whereas Y. yeosuensis is expected to be rare or absent at 5℃ or ≥30℃ at which its two prey species do not survive or grow. Therefore, temperature can directly or indirectly affect the population dynamics and distribution of Y. yeosuensis.

Comparison of the spatial-temporal distributions of the heterotrophic dinoflagellates Gyrodinium dominans, G. jinhaense, and G. moestrupii in Korean coastal waters

  • Lee, Sung Yeon;Jeong, Hae Jin;Kang, Hee Chang;Ok, Jin Hee;You, Ji Hyun;Park, Sang Ah;Eom, Se Hee
    • ALGAE
    • /
    • v.36 no.1
    • /
    • pp.37-50
    • /
    • 2021
  • Heterotrophic dinoflagellates Gyrodinium spp. are one of the major grazers of phytoplankton in many coastal waters. Gyrodinium dominans, G. jinhaense, and G. moestrupii have similar morphologies but different edible prey species. To explore the variations in the ecological niches of these three species, we investigated their spatial-temporal distributions in Korean waters. Because of the high similarity in morphology among these three Gyrodinium species, we used real-time polymerase chain reactions to quantify their abundance in water samples that were seasonally collected from 28 stations along the Korean Peninsula from April 2015 to October 2018. Cells of G. dominans were found at all sampling stations, G. jinhaense at 26 stations, and G. moestrupii at 22 stations, indicating that all three species were widely distributed in Korea. Furthermore, all three species displayed strong seasonal distributions. The largest numbers of the stations where G. dominans and G. jinhaense cells were present were found during the summer (26 and 23 stations, respectively), but that for G. moestrupii was found in the autumn (15 stations). The abundance of G. dominans was positively correlated with that of G. jinhaense, but not with that of G. moestrupii. The highest abundances of G. dominans (202.5 cells mL-1) and G. jinhaense (20.2 cells mL-1) were much greater than that of G. moestrupii (1.2 cells mL-1). The highest abundances of G. dominans and G. jinhaense were found in July, whereas that of G. moestrupii was found in March. The abundances of G. dominans and G. jinhaense, but not G. moestrupii, were positively correlated with water temperature. Therefore, the spatial-temporal distributions of G. dominans and G. jinhaense were closer than those of G. moestrupii and G. dominans or G. jinhaense. This differs from results based on the relative differences in ribosomal DNA sequences and the types of edible prey reported in the literature. Thus, the variations in spatial-temporal distributions and prey species of these three Gyrodinium species suggest that they may have different ecological niches in Korean coastal waters.

A Study on Measurement of the Gravity in KOREA (우리나라 중력측정에 관한 연구)

  • 백은기;김감래
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 1987
  • Using double-measurmented gravity values which observed by Lacoste instrument, drifts and MSE are analized after TIDE correction and Bouguer reduction is investigation. As the result of this study, it is possible to calculation a latitude, longitude, gravity and elevation at unknown point, and perphaps will be used as a fundamental data for application in the earth's crust structural analysis and geophysics.

  • PDF

Research on Transferring the National Height System to the Island

  • Liu, Yanxiong;Zhou, Xinghua;Peng, Lin;Wu, Yongtong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.425-427
    • /
    • 2006
  • It is quite difficult to transfer the National Height System 1985 to the island in China. In the study, one feasible and alternative way, which measures synchronally the tide variation at the island and the coast , is firstly introduced. Then, a new method is proposed. This new method combines GPS technique and Quasi-Geoid Determination technique (GQGD). It needs gravity data, GPS data, leveling data and DEM data, together with complex calculation method and the Earth gravity model. After describing the mathematical model and presenting the calculational steps, one experiment has been shown that this method is valid and can achieve accuracy up to 5 cm for the normal height, compared with the results both from the tidal observation and height approximation. Some suggestion is also given in the end.

  • PDF