• 제목/요약/키워드: earth system

검색결과 4,152건 처리시간 0.036초

사기오미론(四氣五味論)의 구조적 해석 (Structural Interpretation of Properties and Flavors of Drugs)

  • 조용주;김진주
    • 한국한의학연구원논문집
    • /
    • 제11권2호
    • /
    • pp.23-33
    • /
    • 2005
  • Four Properties and five Flavors of Drugs is interpreted by adaptation of human body to the environmental theory(天人相應). The Structural model of the body is compared with sky, earth, sun and moon (天, 地, 日, 月). The natural changes of the four seasons give rise to that of Four Properties and five Flavors of Drugs. On equal terms it is happened in our body. On this study we can draw an analogy between sky, earth, sun & moon (天, 地, 日, 月) and the body. The six bu(六腑) is related to the earth, the five ju(五主) to the sky, the five jang(五臟) to the sun, the meridians system (經絡) to the moon. When spring, the air is warm, the water element of the earth is ascending, and the earth gives birth to the sour flavor. Like this, the water element is absorbed by six bu and then is ascended to the meridian system. When summer, the air is hot and the water element of the earth is floated, the earth make the bitter flavor. In the same way, the six bu absorbed the hot air from the five ju and the water element is quickly absorbed by six bu and then the water element is ascended to the meridian system. When rainy season (長夏), the earth creates the sweet flavor The sweet flavor give warmer energy to the five jang and the six bu. When autumn, the earth change the sweet flavor into pungent. The earth gives warmer energy to the sky, because of cool weather According to same process, the pungent flavor give warmer energy to the five jang and the six bu, and the meridian system gets back the water element from the five ju. When winter, the air is cold and the water element of the earth is hidden. The sky and the earth are not interchangeable. At that time, the earth produce the salty flavor and the water element is keeping in the meridian system.

  • PDF

Effect of the Earth Pressure Coefficient on the Support System in Jointed Rock Mass

  • Son, Moorak;Adedokun, Solomon;Hwang, Youngcheol
    • 한국지반환경공학회 논문집
    • /
    • 제16권2호
    • /
    • pp.33-43
    • /
    • 2015
  • This paper investigated the magnitude and distribution of earth pressure on the support system in jointed rock mass by considering different earth pressure coefficients, rock types and joint inclination angles. The study mainly focused on the effect of the earth pressure coefficients on the earth pressure. Based on a physical model test (Son & Park, 2014), extended studies were conducted considering rock-structure interactions based on the discrete element method, which can consider the joints characteristics of rock mass. The results showed that the earth pressure was highly influenced by the earth pressure coefficients as well as the rock type and joint inclination angles. The effects of the earth pressure coefficients increased when the rock suffered more weathering and has no joint slide. The test results were also compared with Peck's earth pressure for soil ground, and clearly showed that the earth pressure in jointed rock mass can be greatly different from that in soil ground. This study indicated the earth pressure coefficients considering the rock types and joint inclination angles are important parameters influencing the magnitude and distribution of earth pressure, which should be considered when designing the support systems in jointed rock mass.

Earth System Science (ESS) Course for Urban Planning and Engineering Undergraduate Students

  • Nam, Younkyeong;Yun, Sung-Hyo
    • 한국지구과학회지
    • /
    • 제38권5호
    • /
    • pp.357-366
    • /
    • 2017
  • Urban planning and engineering undergraduate students need to understand the earth physical systems and that how human beings interact with the earth systems to planning and engineering urban area. The eco-friendly or geo-friendly design and planning of an urban area is a critical issue not only for economic benefits but more importantly for the sustainable future of urban life. However, little study has been done dealing with the urban engineering students' understanding of the earth as a system and what pedagogical approach is appropriate to improve their understanding of the earth as a system. This study is to investigate the impact of a purposely designed ESS course on urban engineering students' understanding of the earth as a system and their perceptions about the instructional approaches of the course on their learning competency. This study utilized a mixed-methodology with three main data sources: concept maps, student's perception survey about their learning competency, and course contents. Both the survey and concept maps were analyzed quantitatively as well as qualitatively. The result of this study showed that the urban engineering students' experience of team-based research about the topic they chose based on their own interest had a positive impact on their understanding of the earth as a system and their learning competency. The results of this study suggest that structuring and presenting the earth system contents in the context of engineering students' understanding and their future career be effective not only for the improvement of students' content knowledge but also for the enhancement of their learning competency such as creativity and problem-solving skills in everyday life situation.

Effects of partially earth-anchored cable system on dynamic wind response of cable-stayed bridges

  • Won, Jeong-Hun;Yoon, Ji-Hyun;Park, Se-Jun;Kim, Sang-Hyo
    • Wind and Structures
    • /
    • 제11권6호
    • /
    • pp.441-453
    • /
    • 2008
  • In this study, a partially earth-anchored cable system is studied in order to reduce the dynamic wind response of cable-stayed bridges. The employment of earth-anchored cables changes the dynamic characteristics of cable-stayed bridges under wind loads. In order to estimate the changes in the member forces, the spectral analysis for wind buffeting loads are performed and the peak responses are evaluated using 3-D finite element models of the three-span cable-stayed bridges with the partially earth-anchored cable system and with the self-anchored cable system, respectively. Comparing the results for the two different models, it is found that the earth-anchored cables affect longitudinal and vertical modes of the bridge. The changes of the natural frequencies for the longitudinal modes remarkably decrease the peak bending moment in the pylon and the movements at the expansion joints. The small changes of the natural frequencies for the vertical modes slightly increase bending moments and deflections in the girder. The original effects of the partially earth-anchored cable system are also shown under wind loads; the decrement of girder axial forces and bearing uplifting forces, and the increment of cable forces in the earth-anchored cables.

억지말뚝을 이용한 자립식 흙막이 공법의 개발 (A Study on a Self-supported Earth Retaining Wall with Stabilizing Piles)

  • 심재욱;백성권
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1461-1467
    • /
    • 2005
  • In this study, a new earth retention system has been developed and introduced. This system is a self-supported earth retaining wall without struts. The new earth retention system consists of connected double H-pile and wale. This system provides a larger spacing of support, economical benefit, construction easiness, good performance and safety. This paper explains basic principles and mechanism of self-supported earth retaining wall. In order to investigate applicability and safety of this system, numerical analysis was performed. The finite differential method program, FLAC3D is used. The predicted performances of this system were presented and discussed.

  • PDF

쏘일네일링 공법을 적용한 영구 지하굴착 벽체의 설계사례 연구 (Design Case Study of Permanent Excavation Wall Using Soil Nailing System)

  • 박시삼;이제만;유찬호;김홍택
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.84-91
    • /
    • 2005
  • In case of soil nailing system, there have been many attempts to expand into slope and temporary earth retaining system stabilization method since the first ground excavation earth retaining system construction in 1993. Recently, jointing wall, underground wall of buildings and excavation earth retaining wall, construction were increasingly applied for effective utilization of the limited underground space and land application maximized. However, the application of joining wall into retaining wall or building by temporary soil nailing system and design of permanent wall were performed by using Rankine earth pressure theory without considering the distribution of earth pressure in the soil nailing. In this study was performed to introduce the design case by 'Two-Body Translation mechanism (TBTM)' to be able to consider distribution of earth pressure in the soil nailing when designing the permanent jointing wall using soil nailing system for effective utilization of ground space. Also, this study attempts to evaluate the earth pressure change, decreasing effect of wall displacement and increasing effect of stability when advanced soil nailing system is constructed using $FLAC^{2D}$ ${\nu}er.$ 3.30 program and 'Two-Body Translation mechanism'.

  • PDF

장경간 사장교에 적용된 일부타정식 케이블 시스템의 지진하중과 풍하중 안전성 향상 효과 분석 (Effects of Partially Earth Anchored Cable System on Safety Improvement for a Long-span Cable-stayed Bridge under Seismic and Wind Load)

  • 원정훈;이형도
    • 한국안전학회지
    • /
    • 제31권4호
    • /
    • pp.97-103
    • /
    • 2016
  • This study investigates effects of partially earth anchored cable system on the structural safety for a long-span cable-stayed bridge under dynamic loads such as seismic and wind load. For a three span cable-stayed bridge with a main span length of 810 m, two models are analyzed and compared; one is a bridge model with a self anchored cable system, the other is a bridge model with a partially earth anchored cable system. By performing multi-mode spectrum analysis for a prescribed seismic load and multi-mode buffeting analysis for a fluctuating wind component, the structural response of two models are compared. From results, the partially earth anchored cable system reduce the maximum pylon moment by 66% since earth anchored cables affect the natural frequencies of girder vertical modes and pylon longitudinal modes. In addition, the girder axial forces are decreased, specially the decrement of the axial force is large in seismic load, while girder moment is slightly increased. Thus, the partially earth anchored cable system is effective system not only on reduction of girder axial forces but also improvement of structural safety of a cable-stayed bridge under dynamic loads such as seismic and wind loads.