• Title/Summary/Keyword: earth observation camera

Search Result 73, Processing Time 0.025 seconds

Estimation of Total Cloud Amount from Skyviewer Image Data (Skyviewer 영상 자료를 이용한 전운량 산출)

  • Kim, Bu-Yo;Jee, Joon-Bum;Jeong, Myeong-Jae;Zo, Il-Sung;Lee, Kyu-Tae
    • Journal of the Korean earth science society
    • /
    • v.36 no.4
    • /
    • pp.330-340
    • /
    • 2015
  • For this study, we developed an algorithm to estimate the total amount of clouds using sky image data from the Skyviewer equipped with CCD camera. Total cloud amount is estimated by removing mask areas of RGB (Red Green Blue) images, classifying images according to frequency distribution of GBR (Green Blue Ratio), and extracting cloud pixels from them by deciding RBR (Red Blue Ratio) threshold. Total cloud amount is also estimated by validity checks after removing sunlight area from those classified cloud pixels. In order to verify the accuracy of the algorithm that estimates total cloud amount, the research analyzed Bias, RMSE, and correlation coefficient compared to records of total cloud amount earned by human observation from the Gangwon Regional Meteorological Administration, which is in the closest vicinity of the observation site. The cases are selected four daily data from 0800 LST to 1700 LST for each season. The results of analysis showed that the Bias in total cloud amount estimated by the Skyviewer was an average of -0.8 tenth, and the RMSE was 1.6 tenths, indicating the difference in total cloud amount within 2 tenths. Also, correlation coefficient was very high, marking an average of over 0.91 in all cases, despite the distance between the two observation sites (about 4 km).

CCD Photometry of the Asteroid 55 Pandora (소행성 55 Pandoro의 CCD 측광 연구)

  • Kwon, Sun-Gill;Kim, Seung-Lee;Lee, Ho;Jeon, Young-Beom;Park, Hong-Suh
    • Journal of the Korean earth science society
    • /
    • v.28 no.4
    • /
    • pp.491-496
    • /
    • 2007
  • We performed R band time-series CCD photometric observations of the 55 Pandora for 2 nights using the 0.6 m telescope equipped with 2K CCD camera at SOAO (Sobaeksan Optical Astronomical Observatory). From the observation we determined its rotation period $P=0.^d2007=4.^h8168$, and maximum amplitude $0.281\;{\pm}\;0.001$. We also derived the pole position ${\lambda}_p(^o)=342$, ${\beta}_p(^o)=64$, and the shape parameter a/b = 1.27, b/c = 1.31 by applying Amplitude-Magnitude method.

DEM generation from KOMPSAT-1 Electro-Optical Camera Data

  • Kim, Taejung;Lee, Heung-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.325-330
    • /
    • 1998
  • The first Korean remote sensing satellite, Korea Multi-Purpose Satellite (KOMPSAT-1), is going to be launched in 1999. This will carry a 7m resolution Electro-Optical Camera (EOC) for earth observation. The primary mission of the KOMPSAT-1 is to acquire stereo imagery over the Korean peninsular for the generation of 1:25,000 cartographic maps. For this mission, research is being carried out to assess the possibilities of automated or semi-automated mapping of EOC data and to develop, if necessary, such enabling tools. This paper discusses the issue of automated DEM generation from EOC data and identifies some important aspects in developing a for DEM generation system from EOC data. This paper also presents the current status of the development work for such a system. The development work has focused on sensor modelling, stereo matching and DEM interpolation techniques. The performance of the system is shown with a SPOT stereo pair. A DEM generated from a commercial software is also presented for comparison. The paper concludes that the proposed system creates preferable results to the commercial software and suggests future developments for successful generation of DEM for EOC data.

  • PDF

Design of 3-Axis Focus Mechanism Using Piezoelectric Actuators for a Small Satellite Camera (소형 위성 카메라의 압전작동기 타입 3-축 포커스 메커니즘 설계)

  • Hong, Dae Gi;Hwang, Jai Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.9-17
    • /
    • 2018
  • For Earth observation, a small satellite camera has relatively weak structural stability compared to medium-sized satellite, resulting in misalignment of optical components due to severe launching and space environments. These alignment errors can deteriorate the optical performance of satellite cameras. In this study, we proposed a 3-axis focus mechanism to compensate misalignment in a small satellite camera. This mechanism consists of three piezo-electric actuators to perform x-axis and y-axis tilt with de-space compensation. Design requirements for the focus mechanism were derived from the design of the Schmidt-Cassegrain target optical system. To compensate the misalignment of the secondary mirror (M2), the focus mechanism was installed just behind the M2 to control the 3-axis movement of M2. In this case, flexure design with Box-Behnken test plan was used to minimize optical degradation due to wave front error. The wave front error was analyzed using ANSYS. The fabricated focus mechanism demonstrated excellent servo performance in experiments with PID servo control.

Design and Development of Thermal Control Subsystem for an Electro-Optical Camera System (전자광학카메라 시스템의 열제어계 설계 및 개발)

  • Chang, Jin-Soo;Yang, Seung-Uk;Jeong, Yun-Hwang;Kim, Ee-Eul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.798-804
    • /
    • 2009
  • A high-resolution electro-optical camera system, EOS-C, is under development in Satrec Initiative. This system is the mission payload of a 400-kg Earth observation satellite. We designed this system to give improved opto-mechanical and thermal performance compared with a similar camera system to be flown on the DubaiSat-1 system. The thermal control subsystem (TCS) of the EOS-C system uses heaters to meet the opto-mechanical requirements during in-orbit operation and it uses different thermal coating materials and multi-layer insulation (MLI) blankets to minimize the heater power consumption. We performed its thermal analysis for the mission orbit using a thermal analysis model and the result shows that its TCS satisfies the design requirements.

Thermal Design and On-Orbit Thermal Analysis of 6U Nano-Satellite High Resolution Video and Image (HiREV) (6U급 초소형 위성 HiREV(High Resolution Video and Image)의 광학 카메라의 열 설계 및 궤도 열 해석)

  • Han-Seop Shin;Hae-Dong Kim
    • Journal of Space Technology and Applications
    • /
    • v.3 no.3
    • /
    • pp.257-279
    • /
    • 2023
  • Korea Aerospace Research Institute has developed 6U Nano-Satellite high resolution video and image (HiREV) for the purpose of developing core technology for deep space exploration. The 6U HiREV Nano-Satellite has a mission of high-resolution image and video for earth observation, and the thermal pointing error between the lens and the camera module can occur due to the high temperature in camera module on mission mode. The thermal pointing error has a large effect on the resolution, so thermal design should solve it because the HiREV optical camera is developed based on commercial products that are the industrial level. So, when it operates in space, the thermal design is needed, because it has the best performance at room temperature. In this paper, three passive thermal designs were performed for the camera mission payload, and the thermal design was proved to be effective by performing on-orbit thermal analysis.

Signal Level Analysis of a Camera System for Satellite Application

  • Kong, Jong-Pil;Kim, Bo-Gwan
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.220-223
    • /
    • 2008
  • A camera system for the satellite application performs the mission of observation by measuring radiated light energy from the target on the earth. As a development stage of the system, the signal level analysis by estimating the number of electron collected in a pixel of an applied CCD is a basic tool for the performance analysis like SNR as well as the data path design of focal plane electronic. In this paper, two methods are presented for the calculation of the number of electrons for signal level analysis. One method is a quantitative assessment based on the CCD characteristics and design parameters of optical module of the system itself in which optical module works for concentrating the light energy onto the focal plane where CCD is located to convert light energy into electrical signal. The other method compares the design\ parameters of the system such as quantum efficiency, focal length and the aperture size of the optics in comparison with existing camera system in orbit. By this way, relative count of electrons to the existing camera system is estimated. The number of electrons, as signal level of the camera system, calculated by described methods is used to design input circuits of AD converter for interfacing the image signal coming from the CCD module in the focal plane electronics. This number is also used for the analysis of the signal level of the CCD output which is critical parameter to design data path between CCD and A/D converter. The FPE(Focal Plane Electronics) designer should decide whether the dividing-circuit is necessary or not between them from the analysis. If it is necessary, the optimized dividing factor of the level should be implemented. This paper describes the analysis of the electron count of a camera system for a satellite application and then of the signal level for the interface design between CCD and A/D converter using two methods. One is a quantitative assessment based on the design parameters of the camera system, the other method compares the design parameters in comparison with those of the existing camera system in orbit for relative counting of the electrons and the signal level estimation. Chapter 2 describes the radiometry of the camera system of a satellite application to show equations for electron counting, Chapter 3 describes a camera system briefly to explain the data flow of imagery information from CCD and Chapter 4 explains the two methods for the analysis of the number of electrons and the signal level. Then conclusion is made in chapter 5.

  • PDF

MIRIS 지구관측 적외선카메라 인증모델 성능 시험 및 Field Test

  • Mun, Bong-Gon;Park, Yeong-Sik;Lee, Chang-Hui;Park, Seong-Jun;Cha, Sang-Mok;Lee, Dae-Hui;Jeong, Ung-Seop;Nam, Uk-Won;Park, Jang-Hyeon;Yuk, In-Su;Ga, Neung-Hyeon;Lee, Mi-Hyeon;Lee, Deok-Haeng;Yang, Sun-Cheol;Kim, Yeong-Ju;Lee, Gi-Hun;Jeong, Han;Lee, Seung-U;Han, Won-Yong
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.45.1-45.1
    • /
    • 2009
  • 과학기술위성 3호의 주탑재체인 MIRIS (Multi-purpose InfraRed Imaging System)는 우주관측카메라 (Space Observation Camera, SOC)와 지구관측카메라 (Earth Observation Camera, EOC)가 독립적인 시스템으로 구성되어 있다. 지구관측카메라는 유효 구경 100 mm, F/5의 광학계로 3-5 마이크론 파장영역을 관측하며, 국내에서 개발된 적외선 검출기의 우주 인증 시험과 유사시 한반도 적외선 감시를 주요 목적으로 하고 있다. 고도 700km에서 지상을 볼 때 약 42m/pixel의 공간분해능을 나타낼 것으로 기대하고 있다. 지구관측카메라의 인증 모델(Qualification Model)은 냉동기를 제외한 모든 부품이 국내기술로 제작되었으며, 미러 본딩 및 릴레이 렌즈 조립 기술, 적외선 영상 검교정 기술 등 다양한 경험과 도전을 제공했다. 이 발표에서는 지구관측카메라 인증모델을 이용하여 수행한 주요 시험 과정을 소개한다. 국내 회사 (주)i3 system에서 제작된 적외선 검출기는 $320\times256$ HgCdTe array (평균 양자효율 80% 이상) 이며 77K에서 정상적으로 운영된다. Micro Stirling Cooler에 의해 듀어는 전원을 켠 후 5분 이내에 검출기 운영온도인 77K까지 내려간다. 적외선 광학계의 정렬, 시스템 MTF 측정, 흑체 측정 및 검교정 작업을 수행한 후 야외에서 다양한 경우에 대해 Field Test를 진행했다. 이 발표에서는 Field Test 과정과 이를 통해 얻은 결과를 발표하고, FM (Flight Model) 제작에 있어 수정해야 할 사항들을 제안해 본다.

  • PDF

과학기술위성 3호 주탑재체 MIRIS의 비행모델 우주환경시험

  • Mun, Bong-Gon;Park, Yeong-Sik;Park, Gwi-Jong;Lee, Deok-Haeng;Lee, Dae-Hui;Jeong, Ung-Seop;Nam, Uk-Won;Park, Won-Gi;Kim, Il-Jung;Cha, Won-Ho;Sin, Gu-Hwan;Lee, Sang-Hyeon;Seo, Jeong-Gi;Park, Jong-O;Lee, Seung-U;Han, Won-Yong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.205.1-205.1
    • /
    • 2012
  • 러시아 발사체 드네프르에 의해 발사될 과학기술위성 3호의 주탑재체 다목적적외선영상시스템, MIRIS (Multipurpose InfraRed Imaging System)는 한국천문연구원에서 주관하여 개발되었다. 그 구성 카메라인 EOC (Earth Observation Camera)는 한반도재난감시를 수행하고, SOC (Space Observation Camera)는 우리 은하 평면의 근적외선 서베이 관측을 통해 $360^{\circ}{\times}6^{\circ}$ Paschen-${\alpha}$ 방출선 지도를 작성하고 I, H 밴드 필터를 이용해서 황도 남북극에 대한 적외선우주배경복사를 관측한다. MIRIS 비행모델이 제작 완료되었고, 그 구성 기기인 SOC, EOC, 전장박스에 대한 최종 우주환경시험을 수행하였다. 과학기술위성 3호의 비행모델 우주환경시험은 진동시험과 열진공시험으로 이뤄지며, 그 시험 규격은 문서에 규정된 Acceptance Level로 수행된다. 충격시험은 공학인증모델을 통해 검증되었다. 열진공시험은 한국천문연구원에서 수행되었으며, 진동시험은 한국과학기술원 인공위성센터에서 수행되었다. 또한 전체 위성이 조립된 후 과학기술위성 3호의 열진공시험은 한국항공우주연구원에서 수행되었다. 이 발표에서는 MIRIS 비행모델에 대한 환경시험과정 및 결과를 보고하고, 과학기술위성이 전체적으로 조립된 후의 MIRIS 진동 및 열진공 시험 결과도 함께 논의한다.

  • PDF

AN EXPERIMENTAL STUDY ON THE ESTABLISHMENT OF PRODUCT VALIDATION SITE AND THE RELATED ACTIVITIES

  • Lee Kwangjae;Kim Younsoo;Kim Yongseung;Hoersch Bianca
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.426-429
    • /
    • 2005
  • In order to evaluate KOrea Multi-Purpose SATellite (KOMPSAT) application products and develop the multi-sensor data application technologies, the Product Validation Site (PVS) will be designed and constructed by Korea Aerospace Research Institute (KARI). Also KARl has a plan for acquisition of multi-sensor data such as ENVISAT ASAR and Project for On Board Autonomy (PROBA) Compact High Resolution Imaging Spectrometer (CHRIS) data through international cooperation with European Space Agency (ESA). These data will be utilized with KOMPSAT-2 Multi-Spectral Camera (MSC) data. KARI and ESA have identified a mutual interest in creating synergy in the joint exploitation of Earth Observation data for science and applications both in Korea and Europe. This paper summarizes the status of joint experimental studies between KARI and ESA for further applications and presents some expected results from related activities.

  • PDF