• Title/Summary/Keyword: earth observation camera

Search Result 73, Processing Time 0.023 seconds

Development of the Earth Observation Camera of MIRIS

  • Lee, Dae-Hee;Han, Won-Yong;Park, Young-Sik;Park, Sung-Jun;Moon, Bong-Kon;Ree, Chang-Hee;Pyo, Jeong-Hyun;Jeong, Woong-Seob;Nam, Uk-Won;Lee, Duk-Hang;Park, Kwi-Jong;Bae, Soo-Ho;Rhee, Seung-Wu;Park, Jong-Oh;Kim, Geon-Hee;Yang, Sun-Choel;Kim, Young-Ju
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.225-232
    • /
    • 2011
  • We have designed and manufactured the Earth observation camera (EOC) of multi-purpose infrared imaging system (MIRIS). MIRIS is a main payload of the STSAT-3, which will be launched in late 2012. The main objective of the EOC is to test the operation of Korean IR technology in space, so we have designed the optical and mechanical system of the EOC to fit the IR detector system. We have assembled the flight model (FM) of EOC and performed environment tests successfully. The EOC is now ready to be integrated into the satellite system waiting for operation in space, as planned.

Optical alignment of a high-resolution optical earth observation camera for small satellites (소형 위성용 고해상도 광학카메라의 광학정렬)

  • Kim, Eugene D.;Park, Young-Wan;Kang, Myung-Seok;Kim, Ee-Eul;Yang, Ho-Soon
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.391-396
    • /
    • 2004
  • Spaceborne earth observation or astronomical payloads often use Cassegrain-type telescopes due to the limits in mass and volume. Precision optical alignment of such a telescope is vital to the success of the mission. This paper describes the simulated optical alignment methods using interferograms, wavefront error, and reverse-optimization method for different levels of alignment accuracy. It concludes with the alignment experiment results of a Cassegrain type spaceborne camera with 300mm entrance pupil diameter.

Software Design of CQUEAN

  • Jeong, Hyeon-Ju;Park, Won-Kee;Kim, Eun-Bin;Choi, Chang-Su;Pak, Soo-Jong;Im, Myung-Shin;Kim, Jung-Hoon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.39.1-39.1
    • /
    • 2010
  • We are developing a CCD camera named CQUEAN (Camera for Quasars in Early Universe) to search for quasars at z > 7. CQUEAN has a 1024*1024 deep depletion CCD chip and will be attached to 2.1m Otto-Struve Telescope at McDonald Observatory, USA. Although commercial software for the CCD camera is provided by the vendor, we are going to develop our own software to control the other instruments as well, to carry out efficient observation. There are four major parts in our software: Instrument control part controls the camera and filter wheel to obtain imaging data. Quick look window is to display acquired imaging data for quick inspection. Telescope control part interfaces with Telescope Control System (TCS) to move the telescope and to get time or coordinate information. Finally, Observation scripting facility part carries out a series of short exposures in a batch. The whole software will be written in python on linux platform, using the instrument control software libraries provided by the vendors.

  • PDF

The phase angle dependences of Reflectance on Asteroid (25143) Itokawa from the Hayabusa Spacecraft Multi-band Imaging Camera(AMICA)

  • Lee, Mingyeong;Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.61.3-62
    • /
    • 2015
  • Remote-sensing observation is one of the observation methods that provide valuable information, such as composition and surface physical conditions of solar system objects. The Hayabusa spacecraft succeeded in the first sample returning from a near-Earth asteroid, (25143) Itokawa. It has established a ground truth technique to connect between ordinary chondrite meteorites and S-type asteroids. One of the scientific observation instruments that Hayabusa carried, Asteroid Multi-band Imaging Camera(AMICA) has seven optical-near infrared filters (ul, b, v, w, x, p, and zs), taking more than 1400 images of Itokawa during the rendezvous phase. The reflectance of planetary body can provide valuable information of the surface properties, such as the optical aspect of asteroid surface at near zero phase angle (i.e. Sun-asteroid-observer's angle is nearly zero), light scattering on the surface, and surface roughness. However, only little information of the phase angle dependences of the reflectance of the asteroid is known so far. In this study, we investigated the phase angle dependences of Itokawa's surface to understand the surface properties in the solar phase angle of $0^{\circ}-40^{\circ}$ using AMICA images. About 700 images at the Hayabusa rendezvous phase were used for this study. In addition, we compared our result with those of several photometry models, Minnaert model, Lommel-Seeliger model, and Hapke model. At this conference, we focus on the AMICA's v-band data to compare with previous ground-based observation researches.

  • PDF

A 3-axis Focus Mechanism of Small Satellite Camera Using Friction-Inertia Piezoelectric Actuators

  • Hong, Dae Gi;Hwang, Jai Hyuk
    • International Journal of Aerospace System Engineering
    • /
    • v.5 no.2
    • /
    • pp.8-15
    • /
    • 2018
  • For small earth observation satellites, alignment between the optical components is important for precise observation. However, satellite cameras are structurally subject to misalignment in the launch environment where vibration excitations and impacts apply, and in space environments where zero gravity, vacuum, radiant heat and degassing occur. All of these variables can cause misalignment among the optical components. The misalignment among optical components results in degradation of image quality, and a re-alignment process is needed to compensate for the misalignment. This process of re-alignment between optical components is referred to as a refocusing process. In this paper, we proposed a 3 - axis focusing mechanism to perform the refocusing process. This mechanism is attached to the back of the secondary mirror and consists of three piezoelectric inertia-friction actuators to compensate the x-axis, y-axis tilt, and de-space through three-axis motion. The fabricated focus mechanism demonstrated excellent servo performance by experimenting with PD servo control.

Realizing the Potential of Small-sized Aperture Camera (SAC) in High-Resolution Imaging Age

  • Choi, Young-Wan;Kim, Ee-Eul;Park, Sung-dong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.642-644
    • /
    • 2003
  • SAC is a compact electro-optical camera for imaging in visible-NIR spectral ranges. SAC provides highresolution images over the wide geometric and spectral ranges: 10 m ground sample distance (GSD) and 50 km swath width in the spectral ranges of 520 ${\sim}$ 890 nm. SAC is designed to produce high quality images: modulation transfer function (MTF) of more than 15 %; signal-to-noise ratio (SNR) of more than 100. The missions of SAC incorporate various imaging operations: multi-spectral imaging; super swath-width imaging with cameras in parallel; along-track stereo imaging with slanted 2 cameras.

  • PDF

IMAGE DATA CHAIN ANALYSIS FOR SATELLITE CAMERA ELECTRONIC SYSTEM

  • Park, Jong-Euk;Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun;Chang, Young-Jun
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.791-793
    • /
    • 2006
  • In the satellite camera, the incoming light source is converted to electronic analog signals by the electronic component for example CCD (Charge Coupled Device) detectors. The analog signals are amplified, biased and converted into digital signals (pixel data stream) in the video processor (A/Ds). The outputs of the A/Ds are digitally multiplexed and driven out using differential line drivers (two pairs of wires) for cross strap requirement. The MSC (Multi-Spectral Camera) in the KOMPSAT-2 which is a LEO spacecraft will be used to generate observation imagery data in two main channels. The MSC is to obtain data for high-resolution images by converting incoming light from the earth into digital stream of pixel data. The video data outputs are then MUXd, converted to 8 bit bytes, serialized and transmitted to the NUC (Non-Uniformity Correction) module by the Hotlink data transmitter. In this paper, the video data streams, the video data format, and the image data processing routine for satellite camera are described in terms of satellite camera control hardware. The advanced satellite with very high resolution requires faster and more complex image data chain than this algorithm. So, the effective change of the used image data chain and the fast video data transmission method are discussed in this paper

  • PDF

Development of the Ultra Precision Machining of IR Material for Space Observation Optical System (우주관측용 광학계의 적외선 초자 초정밀 가공 기술개발)

  • Yang, Sun-Choel;Won, Jong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.9-14
    • /
    • 2010
  • Using an IR (infrared) optical system of observation and research were performed long before. Nowadays satellites equipped with IR optical system observe the earth and universe. In this paper, we developed the IR optical system for main payload of the STSAT-3 (Science and Technology Satellite -3). We studied the ultra precision machining technique to fabricate FPL-53 lenses which is the IR optical material for space observation camera of the STSAT-3. DOE (Design of Experiment) was used to find best machining characteristic for FPL-53. Finally we fabricated FPL-53 aspheric lens with the form accuracy of P-V $0.36\;{\mu}m$.