• Title/Summary/Keyword: early-transplanting cultivation

Search Result 122, Processing Time 0.022 seconds

Growth Characteristics of Angelica gigas Nakai on Transplantation Season (April and Autumn) (정식계절(봄, 가을)에 따른 참당귀(Angelica gigas Nakai)의 생장특성)

  • Jeong, Dae Hui;Kim, Nam Soo;Kim, Ki Yoon;Park, Hong Woo;Jung, Chung Ryul;Kim, Hyun-Jun;Jeon, Kwon Seok;Kim, Mahn Jo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.72-72
    • /
    • 2019
  • This study compared the growth characteristics of A. gigas according to the transplanting season, in the cultivation located in Yeongju, Gyeongsangbuk-do, transplanted in the autumn and spring. As a result of that the plant survival rate were observed the highest autumn transplanting (9.4%; autumn-92.2%, spring-82.8%) and bolting rate were observed lowest spring transplanting (7.1%; autumn-37.3%, spring-30.2%). Growth characteristics (height, leaf length and width, stem diameter) were observed the highest autumn transplanting in June and highest spring transplanting in August. The early growth is high growth due to long rooting time in autumn transplanting, but the difference in the ground growth between the two experiments was insignificant when the main growth period was from June to August. Further analysis of the growth characteristics and marker components of roots of A. gigas can be used to determine the optimal planting time and the establishment of high quality cultivation technology.

  • PDF

Yield and Storability of Spring Transplanted Onion Cultivars in the Middle Area of the Korean Peninsula (중부지방에서 플러그 육묘에 의한 춘파 양파 품종의 생육과 저장성)

  • Lee, Jung-Soo;Park, Su-Hyung;Park, De-Young;Lee, Youn-Suk;Chun, Chang-Hoo
    • Journal of Bio-Environment Control
    • /
    • v.18 no.1
    • /
    • pp.51-59
    • /
    • 2009
  • Bulb onion cultivation area has been restricted in southern part of Korea to avoid blotting and bulb division. The traditional culture method is transplanting bare-rooted plantlet into the field at the end of summer and harvesting at the beginning of next summer. The hot weather and weak plantlets occasionally causes unstable supply of onions in autumn. In order to enlarge cultivation area and to reduce culture period, long nursery system using plug tray and spring transplanting was tried. Forty cultivars collected from Korea and Japan were nursed using 200-plug tray and transplanted to the field in spring. Marketable yield was not related to the seedling size but lodging time. Cultivar of 'Hamasodachi' was lodged early and resulted low marketable yield. Cultivar of 'Cheonjudaego' was not lodged and yielded high but not in accordance with storability. Generally early lodged cultivars showed low storability. In order to avoid rainy harvesting season, cultivars requires excessive long time for lodging is not recommended for spring culture. Using plug nursery and spring transplanting, we successfully produced marketable onions in 3 months. But immediate using of the harvested onion is recommended. The storability of produced onions showed different result among cultivars, storage of spring onion was not recommended.

Transition of Rice Culture Practices during Chosun Dynasty through Old References V. Cultivation and Cropping Patterns (주요 고농서를 통한 조선시대의 도작기술 전개 과정 연구 V. 재배양식)

  • Lee, Sung-Kyum;Guh, Ja-Ok;Lee, Eun-Woong;Lee, Hong-Suk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.1
    • /
    • pp.104-115
    • /
    • 1992
  • The rice culture techniques included 'Jodosukyungbeob'(旱稻水耕法 : culture techniques of early-ripening paddy rice), 'Mandosukyungbeob' (晩稻水耕法) : culture techniques of late-Ripening paddy rice 'Handobeob'(旱稻<山稻>法 : culture techniques of upland rice), 'Myojongbeob'(苗種法 : culture techniques of paddy rice by transplanting), 'Kunangbeob'(乾秧法 : culture techniques of rice by transplanting which rears seeding in dry paddy) and 'Sudogunpanongbeob'(水稻乾播農法 : culture techniques of paddy rice seeding in dry field). Especially, 'Kunangbeob' and 'Sudogunpanongbeob' were originally developed in Korea as seen in 1600s(Kyoungje : 經濟) and early 1800s (Yoji : 要旨). In 'Jodosukyungbeob' it took 9 days for seed dipping, water-sprouting and prevent damage by birds, each for 3 days in China, but in Korea seed dipping in water took 3 days and the rest of the procedures were flexibly established. In matured soils, practices were fall plowing right after harvest, recognition of effective tillering and additional fertilization use of human manure, and stimulation of sprouting by lime application. The unique culture techniques adequate for Korean situations were practiced, which included weed control after draining accurately for 3 to 4 times, draining at mid season for improving wind and drought tolerance, rice harvesting at appropriate time for preventing grain shattering, and seeding in rows. 'Mandosukyungbeob' was improved techniques contrast to those of China, and the major contents were selection of proper varieties, good stand establishment by seeding high rates, induction of vigorous tillers, and adoption of 'Jokjongbeob'(足種法 : seeding method by foot). Also, one of the most prominent rice cultures by our ancestors was 'Kunpanongbeob' that was systemized form habitual practice of Pyongan Province. The unique technique actualized was 'Hando [旱稻(山稻)]' culture technique which was the combinations of 'Jokjongbeob', root stimulation method, and disaster-tolerant mixture cropping with adoptation of variety theory, although it was originated from China. The transplanting techniques has come before 'Jikseol'($\ulcorner$直說$\lrcorner$) and its merits were sufficiently realized. However, this method was basically prohibited from the early Chosun dynasty because extremely bad harvest was expected under drought conditions and insufficient conditions of water storage. But, it was permitted in the areas that contained water all the times and in case of large-scale farming especially. Most of rice culture was transplanted in the end of the Chosun dynasty because transplanting was continuously spreaded in the three southern provinces of Korea. Under these circumstances, transplanting technique was improved from the early to the end of the Chosun dynasty by weed control, fertilizing, water management, and quadratic transplanting. Based on these techniques, agricultural productivity was improved 5 times by that time. 'Kunpanongbeob' was created and developed properly for Korean conditions that is dry in early season and flooding in late season. This was successively developed and established into transplanting technique of nursery seedling.

  • PDF

Comparison of Methane Emissions by Rice Ecotype in Paddy Soil

  • Tae Hee Kim;Jisu Choi;Seo Young Oh;Seong Hwan Oh
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.145-145
    • /
    • 2022
  • South Korea greenhouse gas emissions have increased year by year, resulting in a total emission of 727.6 million tons of CO2 eq in 2018, a 2.5% increase compared to 2017. Among them, the agricultural sector emitted 21.2 million tons of CO2 eq., accounting for 2.9% of the total. Among the greenhouse gases emitted from the agricultural sector, a particularly problematic is methane gas emitted from rice paddies. Methane is one of the important greenhouse gases with a global warming potential (GWP) that is about 21 times higher than that of carbon dioxide due to its high infrared absorption capacity despite its relatively short remaining atmospheric period. Since the pattern of methane generation varies depending on the rice variety and ecological type, research related to this is necessary for accurate emission calculation and development of reduction technology. Accordingly, a study was conducted to find out the changes in greenhouse gas emission according to rice varieties and ecology types. As for the rice eco-type cultivar, early maturing cultivar (Haedamssal) and medium-late rice cultivar (Saeilmi) were used. Haedamssal was transplanted on May 25 and June 25, and Saeilmi was transplanted on June 10 and June 25. The amount of methane generated according to the growing day showed a tendency to increase as the planting period was earlier. The difference between varieties was that Haedamssal showed higher methane production than Saeilmi. The total CH4 flux in the saeilmi was 18.7 kg·h-1(Jun 10 transplanting), 12.4 kg·h-1(Jun 25 transplanting) during rice cultivation. Lower methane emission was observed in Saeilmi than in Haedam rice. In addition, the earlier the planting period, the higher the methane emission. This study is the result of the first year of research, and it is planned to investigate the amount of greenhouse gas emission between double cropping and single cropping using wheat cultivation after harvest for each ecological type.

  • PDF

Improvement in Rice Cultural Techniques Against Unfavorable Weather Condition (기상재해와 수도재배상의 대책)

  • Ryu, I.S.;Lee, J.H.;Kwon, Y.W.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.385-397
    • /
    • 1982
  • The climatic impacts have been the environmental constraints with soil characteristics to achieve self sufficiency of food production in Korea. In this paper, the distribution and appearance of impacts and the changes in climatological status due to recent trend of early transplanting of rice are widely discussed to derive some countermeasures against the impacts, being focussed on cultural A long term analysis of the climatic impact appearances of the last 74 years showed that drought, strong wind, flood, cold spell and frost were the major impacts. Before 1970's, the drought damage was the greatest among the climatic impacts; however, the expansion and improvement of irrigation and drainage system markedly decreased the damage of drought and heavy rain. The appearance of cold damage became more frequent than before due to introduction of early transplanting for more thermophilic new varieties. Tongillines which were from Indica and Japonica crosses throw more attention to cold damage for high yields to secure high temperature in heading and ripening stages and lead weakness to cold and drought damage in early growth stage after transplanting. The plants became subject to heavy rain in ripening stage also. For the countermeasures against cold damage, the rational distribution of adequate varieties according to the regional climatic conditions and planting schedule should be imposed on the cultivation. A detoured water way to increase water temperature might be suggestable in the early growth stage. Heavy application of phosphate to boost rooting and tillering also would be a nutritional control method. In the heading and ripening stages, foliar application of phosphate and additional fertilization of silicate might be considerable way of nutritional control. Since the amount of solar radiation and air temperature in dry years were high, healthy plants for high yield could be obtained; therefere, the expansion of irrigation system and development of subsurface water should be performed as one of the national development projects. To minimize the damage of strong wind and rainfall, the rational distribution of varieties with different growing periods in the area where the damage occurred habitualy should be considered with installation of wind breaks. Not only vertical windbreaks but also a horizontal wind break using a net might be a possible way to decrease the white heads in rice field by dry wind. Finally, to establish the integrated countermeasures against the climatic impacts, the detailed interpretation on the regional climatic conditions should be conducted to understand distribution and frequency of the impacts. The expansion of observation net work for agricultural meteorology and development of analysis techniques for meteorological data must be conducted in future together with the development of the new cultural techniques.

  • PDF

Variation in Grain Quality and Yield of Black-colored Rice Affected by the Transplanting Time and Temperature during Ripening Stage (흑미 품종의 이앙기와 등숙기 온도 변화에 따른 품질 및 수량 변화 특성 구명)

  • Bae, Hyun Kyung;Seo, Jong Ho;Hwang, Jung Dong;Kim, Sang Yeol
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.2
    • /
    • pp.63-69
    • /
    • 2019
  • Black-colored rice contains anthocyanin, which has an antioxidant function on the seed coat. Anthocyanin content is greatly affected by the cultivation environment, especially the average temperature during the ripening stage. Generally, low temperatures during the ripening stage increase anthocyanin content. To control the average temperature during ripening stage in the field, transplanting time has to be regulated. In this study, anthocyanin content variation was examined in relation to the transplanting time and the average temperature during the ripening stage. For the study, fourteen black-colored rice cultivars with different maturity types (four of early-maturing, five of medium-maturing, and five of medium-late maturing) were selected. The transplanting times used were May 20, June 5, June 20, and June 30. The field experiment was conducted in the Miryang, Kyoungsangnamdo province, Korea from 2014 to 2017. The anthocyanin content in all cultivars was higher when the transplanting time was delayed, and the highest anthocyanin content was observed in the transplanting on June 30. Variation in anthocyanin content according to the change in transplanting time is the greatest in the early maturing cultivars. The least change was observed in medium maturing cultivars. Regression analysis showed a significant correlation between temperature and anthocyanin content, but the degree of correlation was very low in the medium maturing cultivar. As a result, the optimal average temperature during the grain filling stage for increasing the anthocyanin content of black colored rice was $22{\sim}23^{\circ}C$. The rice yield increased in plants transplanted until June 20 and decreased thereafter owing to low temperature during the grain filling stage. The anthocyanin content increased with delaying the transplanting time up to June 30 but the rice yield decreased after June 20. Nevertheless, the rate of increase in anthocyanin content was higher than the rate of decrease in rice yield. As a result, the optimum transplanting time and an average temperature of grain filling stage for black-colored rice variety were June 30 and $23{\sim}24^{\circ}C$ considering both anthocyanin content and rice yield.

Development of Early Maturing Rice Stripe Virus Disease-Resistant 'Haedamssal' through Marker-Assisted Selection (MAS를 이용한 줄무늬잎마름병 저항성 조생종 벼 '해담쌀' 개발)

  • Lee, Jong-Hee;Cho, Jun-Hyeon;Lee, Ji-Yoon;Oh, Seong-Hwan;Kim, Choon-Song;Park, No-Bong;Hwang, Un-Hwa;Song, You-Chun;Park, Dong-Soo;Yeo, Un-Sang
    • Korean Journal of Breeding Science
    • /
    • v.51 no.4
    • /
    • pp.448-453
    • /
    • 2019
  • 'Haedamssal' is an early maturing and rice stripe virus disease-resistant cultivar adaptable for early-transplanting cultivation that was developed by the rice breeding team of the Department of Southern Crop, NICS, RDA, in 2014. This cultivar was derived from the cross YR25869 (YR21247-B-B-B-49-1/Sasanishiki BL4//Koshihikari) and YR25868 (Unkwang//YR21247-B-B-B-49-1/Sasanishiki BL4) made in the 2005/2006 winter season and was advanced to the F5 generation by a bulk breeding method using rapid generation advance. To incorporate rice stripe virus resistance, marker-assisted selection on the RSV gene was conducted in 3-way and 6-way cross F1 generation using the tightly linked marker RM6897. From testing in the replicated yield trial in 2011, a promising line YR26258-B-B-B-33-3 was selected and it was designated as 'Milyang276'. A local adaptability test of 'Milyang276' was performed at three locations from 2012 to 2014 and it was named as 'Haedamssal', which was a good eating quality variety. The culm length was 67 cm in yield trials, which was 4 cm shorter than 'Jopyeong'. The number of spikelets per panicle was lower than 'Jopyeong', whereas the number of tillers per hill was higher. This variety was resistant to RSV disease, bacterial blight, and leaf blast disease. The milled rice yield of 'Haedamssal' was 5.48 MT per ha at the early transplanting in the local adaptability test. 'Haedamssal' is well adapted to early transplanting cultivation in the southern plain area (Registration No. 6811).

Effects of Clipping on Growth and Yield in Sweet Potato (고구마 경엽절제가 생육 및 수량에 미치는 영향)

  • 김익제;손석용;이재웅;유인모;이철희;김태수
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.3
    • /
    • pp.143-146
    • /
    • 2002
  • This study was undertaken to learn what ratio of clipping top was the most optimum for minimizing of the decrease of root yield of over 50g in sweetpotato at early cultivation. The test variety was "Shinyulmi" which was transplanted for early cultivation on April 18. The ratios of cripping top were 5, 10, 15, 20, and 25 percents. The date of clipping top was June 20 when the shoots were transplanted for double cropping. The total length of vine, the number of branches per plant, the number of tuberous roots over 50g and average root weight over 50g were not affected by clipping top. The ratio of root yield over 50g was lower over 20 percents of clipping top. The fresh weights per plant of top and bottom were similar as compared control with 15 percents of clipping top. In conclusion, the optimum ratio of clipping top was 15 percents for maximizing of the production of the shoots in sweetpotato for double cropping. cropping.

Study on Waxy Corn - VIII. Botanical and Ear Characteristices of the Yellow Glutinous Corn Hybrid, Daehakchal Gold 1, at Various Planting Stages (찰옥수수 연구 - VIII. 찰옥수수 대학찰 골드 1호에 대한 파종시기별 주요 작물학적 및 이삭 특성)

  • Cha, Hui-Jeong;Choi, Yun-Pyo;Song, In-Kyu;Bok, Tae-Gyu;Lee, Hee-Bong
    • Korean Journal of Agricultural Science
    • /
    • v.36 no.2
    • /
    • pp.123-127
    • /
    • 2009
  • This study was carried out to gain the informations about seedling transplanting cultivation of Daehakchal Gold 1 which was developed at the Corn Breed. and Genetics Lab., Coll. of Life and Sci., Chungnam Nat'l Univ. in 2009. This hybrid and Check were sowed over four times at intervals of 10 days from 15th April(1st) to 30th May(last) and transplanted at CNU Corn Breed. Farm the 20th seedling cultivated after sowing, respectively. Results obtained from this experiment were as follows; stem height of this hybrid were variable regardless of sowing and transplanting times, while ear height was gradually increased according to delay of sowing times. Ear size and sharp of fresh corn as one of important traits was good at 2nd harvest times, while tip filling of ear harvested at 1st time was not good and also it's size decreased according to delay of transplanting stage. Stability of this hybrid expressed as ratio of stem height to ear height was very good as 50% below. Accordingly, the proper sowing and transplanting times of Daehackchal Gold 1 considered the late in April to early in May as harvesting proper period.

  • PDF

Evaluation of Growth and Yield on Transplanting time and Plant Density in ItalianRyegrass

  • Yun-Ho Lee;Hyeon-Soo Jang;Jeong-Won Kim;Bo-kyeong Kim;Deauk-Kim;Jong-Tak Youn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.101-101
    • /
    • 2022
  • In recent years, due to climate change, the livestock industry has become more interested in the production of forage crops. In Korea, more than 74% of forage crops are cultivated in winter rice fields. In particular, Italian ryegrass (IRG) is depends on imports for more than 70% of its seeds. In generally, the IRG rapeseed cultivation method involves sowing from early October to mid-October by drill sowing seeding or spot seedling. However, the sowing period is delayed due to frequent rainfall during. And, same period require a lot of seeds. However, raising seedlings and transplanted IRG will overcome weather conditions and reduce the amount of seeds. This study was intended to be applied to the domestic IRG seed industry in the future through growth and quantity evaluation according to transplant time and planting density for the production of good quality IRG seeds in rice paddy fields. In this study, transplanting time (October 20, October 30, November 10) and planting density (50, 70, and 80) were cultivated at the National Institute of Crop Science in 2021. The amount of fertilizer applied was adjusted to (N-P2O5-K2O) 4.5-12-12 (kg/10a), and then 2.2(kg/10a) of nitrogen was added each year. For the growth survey, leaf area, canopy coverage, plant length, and seed yield were investigated. Along with the transplanting time, the plant length was higher on October 20 than on October 30 and November 10. On the other hand, leaf area index changes differed depending on the transplanting time and planting density, and were particularly high on October 20, 80 density and 70 density, but similar on October 30 and November 10. 1000 seed weight showed no difference with transplanting time and planting density. On the other hand, the seed yield was 215(kg/10a) for 80 density on October 20, 211(kg/10a) for 70 density, 118(kg/10a) for 50 density, and 80 density for October 30 and November 10. and 70 density did not differ. On the other hand, the 50 density on October 30 and November 10 were 164(kg/10a) and 147(kg/10a) respectively. As can be seen from this study, the earlier the transplant, the higher the seed yield. However, the 50 density was reduced in yield compared to the 70 density and 80 density.

  • PDF