• Title/Summary/Keyword: early strength

Search Result 1,648, Processing Time 0.039 seconds

Influence of Chemical Activators on Cement-Fly ash Paste and Strength Development of Concrete

  • Song, Jong-Taek;Yun, Sung-Dae;Kim, Jae-Young;Lee, Chin-Yong
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.103-106
    • /
    • 2000
  • The effects of replacement level, curing method and chemical admixtures were investigated in the cement-fly ash paste. The strength of cement-fly ash paste is lower than that of controlled cement paste only and the differences increase with replacement level. However, in steam curing, strength of cement-fly ash pastes is improved, especially, at early ages. In order to improve early strength, the use of $Na_2SO_4$in cement-fly ash paste increases the quality of concrete. In addition, improvement of strength of concrete including 30% of fly ash can be obtained and achieves the highest strength compared to other concrete mixtures.

  • PDF

Influence of Chemical Admixtures on Flyahe Paste and Concrete (플라이애쉬 페이스트 및 콘크리트에 화학혼화제가 미치는 영향)

  • 이진용;최수홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.77-82
    • /
    • 1998
  • It was investigated to evaluate the characteristics of cement-flyash paste affected the replacement level, curing method and chemical admixtures. The strength of cement-flyash paste was lower than that of cement paste only and the differences increased with increasing the replacement level. However, in steam curing, the strength of cement-flyash pastes was improved and specially, the early strength was effectively increased. In order to improve the early strength, the use of $Na_2SO_4$ in cement-flyash paste increased the quality of concrete. In addition, the strength of concrete including 30% of fly ash has improved and obtained the highest strength compared to other concrete mix.

  • PDF

Experimental Study on the Early Strength Development Mechanism of Cement Paste Using Hardening Accelerator and High-Early-Strength Cement (경화촉진제와 조강시멘트를 사용한 시멘트 페이스트의 조기강도 발현 메커니즘에 관한 실험적 연구)

  • Min, Tae-Beom;Cho, In-Sung;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.84-92
    • /
    • 2014
  • The purpose of study is to analyze mechanism with early high portland cement and hardening accelerator. As the result, it was concluded that hardening accelerator makes accelerates appearance of $Ca(OH)_2$ through experiment using TG-DTA when it hydrates with cement. On the result of compressive strength, as increasing the amount of hardening accelerator used, early compressive strength was improved. Also, as a result of hydration heat, hardening accelerator accelerates hydration of $C_3S$ that is cement's component. On the result of XRD's analyzation, hydration product for each age could be check and it was shown that as increasing the amount of hardening accelerator used, peak point of hydration product was recorded high. As the result of SEM, appearance of C-S-H was shown as the amount of $Ca(OH)_2$'s appearance and each age according to additive contents of hardening accelerator. Therefore hardening accelerator used on this study is effective on getting early compressive strength.

Bond Characteristics of Reinforced Concrete Beams According to Material Age (콘크리트 재령에 따른 철근콘크리트 보의 부착응력에 관한 실험적 연구)

  • Ryu, Soo-Hyun;Choi, Hyo-Seok;Lee, Joo-Il;Yu, Ho-Hyun;Jeong, Jae-Hun;Kim, Jin-Mu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.103-109
    • /
    • 2002
  • Reinforced concrete structure resist to external load caused by integration of steel bar and concrete and this integration is obtained from bond stress between steel bar and concrete. Researches of bond stress between steel bar and concrete have been performed by many researcher, but existent researches of bond stress are concerned with compression strength of well cured concrete and insufficient study of bond stress according to early material. The secure regular strength of concrete in early age is caused by rapid velocity of early hardening process, but questionable bond stress in early age is proportion to strength of that. So this study performed experiments to compare bond stress according to material age and compression strength. The result is showed that bonding strength in early material age compare the ratio of concrete compression strength with the ratio of maximum bond stress the later inferior on the former.

Water temperature effects on the early strength characteristics of antiwashout underwater concrete (수중온도가 수중불분리성 콘크리트의 초기상도에 미치는 영향에 관한 실험적 연구)

  • 이승훈;정재홍;안태송;원종필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.324-329
    • /
    • 1998
  • Recently the use of the underwater concrete with the antiwashout admixture is increased considerably. When we intend to apply it to the field, we must consider the water temperature effect. In this study, we investigate the properties of setting time, early strength, hydration temperature history and core strength with the antiwashout underwater concrete in the water temperature 8$^{\circ}C$, 14$^{\circ}C$ and 22$^{\circ}C$ respectively. As a result of experiment, as the water temperature is decreasing, setting time is delayed twice of three times and early strength is lower from 10% to 50%. Therefore to compensate the decrease of the early strength, we used the accelerator and investigated the concrete properties.

  • PDF

An Experimental Study on Strength Properties of Concrete Using Blast-Furnace Slag Subjected to Frost Damage at Early Age (초기동해를 입은 고로슬래그 콘크리트의 강도발현 특성에 관한 실험적 연구)

  • 최성우;반성수;최봉주;유득현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.629-634
    • /
    • 2001
  • Recently, to consider financial and constructive aspect, usage of Admixture, like Blast-Furnace Slag and Fly-Ash, are increased. Also the use of cold-weather-concrete is increased. Blast-furnace Slag, a by-product of steel industry, have many advantage, to reduce the heat of hydration, increase in ultimate strength and etc. But it also reduces early-age strength, so it is prevented from using of Blast-Furnace Slag at cold-weather-concrete. In this study, for the purpose of increasing usage of Blast-Furnace Slag at cold-weather-concrete, it is investigated the strength properties of concrete subjected to frost damage for the cause of early age curing. According to this study, if early curing is carried out before having frost damage, the strength of concrete, subjected to frost damage, is recovered. And that properties is not connected with the frost cause.

  • PDF

A Study on Evaluation of High Early Strength Concrete as Pavement Overlay Materials for Early Traffic Opening(2) (신속개방형 콘크리트 도로포장재의 설계를 위한 평가 연구(2))

  • 엄태선;임채용;유재상;이종열;엄주용;조윤호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.233-238
    • /
    • 2001
  • In road Pavements, it is known that cement concrete pavement has superior durability, safety compared with asphalt pavement. But in repairing pavement, cement concrete pavement is not usually applied because of the length of time while the road is interrupted when using Ordinary and Rapid-hardening Portland Cement. And Super High Early Strength Cement and Ultra Super High Early Strength Cement are not favorable for ready mixed concrete because of rapid setting time, high slump loss and other restrictions. We aim to develope special cement and concrete developing 1 day strength of over 300 kg/$\textrm{cm}^2$ to open the road within one day and workable time is maintained over 1 hour that can be used as ready mixed concrete. In this study, we produced cement using rapid-hardening cement, Hauyne clinker, anhydride gypsum and accelerator and studied on its properties. The comperssive strength was over 400 kg/$\textrm{cm}^2$ and tensile at 1 day and workable time was maintained for over 1 hour.

  • PDF

Study on the Strength Development of cement paste using High-Early-Strength Cement and Hardening Accelerator (조강시멘트와 경화촉진제가 압축강도에 미치는 영향에 대한 실험적 연구)

  • Min, Tae-Beom;Jo, In-Seong;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.56-58
    • /
    • 2013
  • In order to develop concrete generating compressive strength of 15MPa~30MPa aging for 6~12 hours in the room temperature curing, Hardening accelerator containing Ca2+ mixed with rapid hardening portland cement containing C3S in quantity. The result was that the more addictive contents of Hardening accelerator is, the more greatly early compressive strength was improved. That s because the composition of Ca(OH)2 was mass-produced at early-ages.

  • PDF

Evaluation of Strength of Normal and Lightweight Aggregate Concrete Using Ultrasonic Velocity Method in Early Age (초기 재령에서 초음파 속도법을 활용한 보통 및 경량 골재 콘크리트의 강도 발현 평가)

  • Nam, Young-Jin;Kim, Won-Chang;Choi, Hyeong-Gil;Ryu, Jung-Rim;Lee, Tae-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.55-56
    • /
    • 2023
  • Recently, large and high-rise buildings are increasing, and accordingly, concrete weight reduction is required. Lightweight aggregate concrete can provide economic feasibility and large space, but safety can be reduced due to problems such as low strength and poor durability. Since the development of such low strength of concrete is important in the early construction stage, it is necessary to evaluate the vertical formwork demolding period at the early age. The correlation was analyzed by measuring the compressive strength and ultrasonic pulse velocity. As a result, the ultrasonic pulse rates of normal and lightweight aggregate concrete at the time of 5 MPa expression, which is the time of vertical mold deformation, were 3.07 km/s and 2.77 km/s for W/B 41, and 2.89 km/s and 2.73 km/s for W/B 33.

  • PDF

Monitoring of Strength Gain in Concrete Using Smart PZT Transducers

  • Qureshi, Adeel Riaz;Shin, Sung-Woo;Yun, Chung-Bang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.501-508
    • /
    • 2007
  • This paper presents the feasibility of using electromechanical impedance based active sensing technique for nondestructive strength gain monitoring of early-age concrete by employing piezoelectric lead-zirconate-titanate (PZT) patches on concrete surface. The strength development of early age concrete is actively monitored by performing a series of experiments on concrete specimens under moist curing condition. The electrical admittance signatures are acquired for five different curing ages and compared with each other. The resonant frequency shifts of PZT patches with increasing days is observed which is on account of additional stiffening due to strength gain of concrete during curing and level of stiffening being related to strength obtained from compression tests on companion cylinder specimens. The proposed approach is found to be suitable for monitoring the development of compressive strength in early-age concrete. It is also observed in this study that root mean square deviation (RMSD) in admittance signatures of the PZT patches can also be used as an indicator of concrete strength development.