• 제목/요약/키워드: early infection

검색결과 1,216건 처리시간 0.032초

Differential Level of Host Gene Expression Associated with Nucleopolyhedrovirus Infection in Silkworm Races of Bombyx mori

  • Lekha, Govindaraj;Vijayagowri, Esvaran;Sirigineedi, Sasibhushan;Sivaprasad, Vankadara;Ponnuvel, Kangayam M.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제29권2호
    • /
    • pp.145-152
    • /
    • 2014
  • The variation in the level of immune response related gene expression in silkworm, Bombyx mori following infection with Bombyx mori nucleopolyhedrovirus (BmNPV) was analyzed at different time intervals. The occlusion bodies of BmNPV orally inoculated to the two most divergent silkworm races viz., Sarupat (resistant to BmNPV infection) and CSR2 (susceptible to BmNPV infection) were subjected to oral BmNPV inoculation. The expression profile of gp 41 gene of BmNPV in the Sarupat and CSR2 races revealed that the virus could invade the midguts of both susceptible and resistant races. However, its multiplication was significantly less in the midgut of resistant race, while, in the susceptible race, the viral multiplication reached maximum level within 12 h. These findings indicate that potential host genes are involved in the inhibition of viral multiplication within larval midgut. The immune response genes arylphorin, cathepsin B, gloverin, lebocin, serpin, Hsp 19.9, Hsp 20.1, Hsp 20.4, Hsp 20.8, Hsp 21.4, Hsp 23.7, Hsp 40, Hsp 70, Hsp90 revealed differential level of expression on NPV infection. The gloverin, serpin, Hsp 23.7 and Hsp 40 genes are significantly up-regulated in the resistant race after NPV infection. The early up-regulation of these genes suggests that these genes could play an important role in baculovirus resistance in the silkworm, B. mori.

TNF in Human Tuberculosis: A Double-Edged Sword

  • Jae-Min Yuk;Jin Kyung Kim;In Soo Kim;Eun-Kyeong Jo
    • IMMUNE NETWORK
    • /
    • 제24권1호
    • /
    • pp.4.1-4.19
    • /
    • 2024
  • TNF, a pleiotropic proinflammatory cytokine, is important for protective immunity and immunopathology during Mycobacterium tuberculosis (Mtb) infection, which causes tuberculosis (TB) in humans. TNF is produced primarily by phagocytes in the lungs during the early stages of Mtb infection and performs diverse physiological and pathological functions by binding to its receptors in a context-dependent manner. TNF is essential for granuloma formation, chronic infection prevention, and macrophage recruitment to and activation at the site of infection. In animal models, TNF, in cooperation with chemokines, contributes to the initiation, maintenance, and clearance of mycobacteria in granulomas. Although anti-TNF therapy is effective against immune diseases such as rheumatoid arthritis, it carries the risk of reactivating TB. Furthermore, TNF-associated inflammation contributes to cachexia in patients with TB. This review focuses on the multifaceted role of TNF in the pathogenesis and prevention of TB and underscores the importance of investigating the functions of TNF and its receptors in the establishment of protective immunity against and in the pathology of TB. Such investigations will facilitate the development of therapeutic strategies that target TNF signaling, which makes beneficial and detrimental contributions to the pathogenesis of TB.

바이러스 감염에 대한 면역반응 (Immune Responses to Viral Infection)

  • 황응수;박정규;차창용
    • IMMUNE NETWORK
    • /
    • 제4권2호
    • /
    • pp.73-80
    • /
    • 2004
  • Viruses are obligate intracellular parasites which cause infection by invading and replicating within cells. The immune system has mechanisms which can attack the virus in extracellular and intracellular phase of life cycle, and which involve both non-specific and specific effectors. The survival of viruses depends on the survival of their hosts, and therefore the immune system and viruses have evolved together. Immune responses to viral infection may be variable depending on the site of infection, the mechanism of cell-to-cell spread of virus, physiology of the host, host genetic variation, and environmental condition. Viral infection of cells directly stimulates the production of interferons and they induce antiviral state in the surrounding cells. Complement system is also involved in the elimination of viruses and establishes the first line of defence with other non-specific immunity. During the course of viral infection, antibody is most effective at an early stage, especially before the virus enters its target cells. The virus- specific cytotoxic T lymphocytes are the principal effector cells in clearing established viral infections. But many viruses have resistant mechanism to host immune responses in every step of viral infection to cells. Some viruses have immune evasion mechanism and establish latency or persistency indefinitely. Furthermore antibodies to some viruses can enhance the disease by the second infection. Immune responses to viral infection are very different from those to bacterial infection.

Host Cell-Intrinsic Antiviral Defense Induced by Type I Interferons

  • Asano, Atsushi
    • 농업과학연구
    • /
    • 제35권2호
    • /
    • pp.177-182
    • /
    • 2008
  • Type I Interferons (IFNs) are potent antiviral cytokines that modulate both innate immunity and adaptive immunity. Type I IFNs are immediately induced by viral infection, and stimulate production of a broad range of gene products such as double-stranded RNA-activated protein kinase (PKR), 2' 5'-oligoadenylate synthetase (OAS)/RNaseL and Mx GTPases. These proteins inhibit viral replication in host cells. Type I IFNs, in turn, lead to antiviral state at early phase of viral infection. We provide an overview of the knowledge of IFN-inducible antiviral proteins conserved in vertebrates.

  • PDF

켐벨얼리 포도의 탄저병 발생특성과 약제방제 (Etiological Characteristics and Chemical Control of Ripe Rot in Grape Cultivar Campbell Early)

  • 김승한;최성용;임양숙;윤재탁;최부술
    • 식물병연구
    • /
    • 제7권3호
    • /
    • pp.140-144
    • /
    • 2001
  • 1997년부터 1999년까지 켐벨얼리품종을 대상으로 대구, 영천, 김천지방에서 탄저병의 발생소장을 조사한 결과 7월과 8월의 강우와 상관이 있었으며 7월 하순부터 초발 되었다. 과방에 봉지를 씌워 탄저병의 주 감염시기를 조사하였을 때 7월 25일 이후 봉지를 씌운 과방에서 발병이 되었으며 시기별로 외관상 건전한 과방을 습실처리하여 잠복감염을 조사하였을 때 7월 25일 이후에 수확된 과일부터 발병 되었다. 탄저병 포자현탁액을 포도표면에 접종하고 균사의 발달을 관찰한 결과 24시간에 부착기가 관찰되었으며 48시간후에는 전면이 균사로 덮여졌다. 접종후 경과시간별 발병정도는 24시간이상 발병조건 부여시 발병이 되었다. 포도 탄저병 방제방법으로는 타로닐 ·마이탄 수화제를 7월 20일 경부터 4회살포시 높은 방제가를 보였다.

  • PDF

Synergistic effect of ribavirin and vaccine for protection during early infection stage of foot-and-mouth disease

  • Choi, Joo-Hyung;Jeong, Kwiwan;Kim, Su-Mi;Ko, Mi-Kyeong;You, Su-Hwa;Lyoo, Young S.;Kim, Byounghan;Ku, Jin-Mo;Park, Jong-Hyeon
    • Journal of Veterinary Science
    • /
    • 제19권6호
    • /
    • pp.788-797
    • /
    • 2018
  • In many countries, vaccines are used for the prevention of foot-and-mouth disease (FMD). However, because there is no protection against FMD immediately after vaccination, research and development on antiviral agents is being conducted to induce protection until immunological competence is produced. This study tested whether well-known chemicals used as RNA virus treatment agents had inhibitory effects on FMD viruses (FMDVs) and demonstrated that ribavirin showed antiviral effects against FMDV in vitro/in vivo. In addition, it was observed that combining the administration of the antiviral agents orally and complementary therapy with vaccines synergistically enhanced antiviral activity and preserved the survival rate and body weight in the experimental animals. Antiviral agents mixed with an adjuvant were inoculated intramuscularly along with the vaccines, thereby inhibiting virus replication after injection and verifying that it was possible to induce early protection against viral infection prior to immunity being achieved through the vaccine. Finally, pigs treated with antiviral agents and vaccines showed no clinical signs and had low virus excretion. Based on these results, it is expected that this combined approach could be a therapeutic and preventive treatment for early protection against FMD.

Development of a High-performance COVID-19 Diagnostic Kit Employing Improved Antibody-quantum dot Conjugate

  • Seongsoo Kim;Hyunsoo Na;Hong-Geun Ahn;Han-Sam Park;Jaewoong Seol;Il-Hoon Cho
    • 대한의생명과학회지
    • /
    • 제29권4호
    • /
    • pp.344-354
    • /
    • 2023
  • This study emphasizes the importance of early diagnosis and response to COVID-19, leading to the development of a rapid diagnostic kit using quantum dots. The research focuses on finely tuning bioconjugation with quantum dots to enhance the accuracy and sensitivity of COVID-19 diagnosis. We have developed a COVID-19 rapid diagnostic kit that exhibits a sensitivity more than 50 times higher than existing COVID-19 diagnostic kits. Quantum dots enable the accurate detection of COVID-19 viral antigens even at low concentrations, providing a rapid response in the early stages of infection. The COVID-19 quantum dot diagnostic kit offers quick analysis time, utilizing the quantum properties of particles to swiftly measure COVID-19 infection for immediate response and isolation measures. Additionally, this diagnostic kit allows for multiple analyses with ease, as multiple quantum dots can detect various antigens and antibodies simultaneously in a single experiment. This efficiency enhances testing, reduces sample requirements, and lowers experimental costs. The application of this diagnostic technology is anticipated in the future for early diagnosis and monitoring of other infectious diseases.

HPV Genotyping Linear Assay Test Comparison in Cervical Cancer Patients: Implications for HPV Prevalence and Molecular Epidemiology in a Limited-resource Area in Bandung, Indonesia

  • Panigoro, Ramdan;Susanto, Herman;Novel, Sinta Sasika;Hartini, Sri;Sahiratmadja, Edhyana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5843-5847
    • /
    • 2013
  • Background: Persistent infection with high risk human papillomavirus (hrHPV) is strongly associated with cervical cancer. Normal cervical cells may also harbor hrHPV, and detection of early hrHPV infection may minimize risk of cervical cancer development. This study aimed to compare two commercial HPV genotyping assays that may affordable for early screening in a limited-resource setting in Bandung, Indonesia. Materials and Methods: DNA from cervical biopsies with histologically confirmed as squamous cell cervical cacinoma were HPV genotyped by Linear Assay 1 (Roche Diagnostics, Mannheim, Germany) or Linear Assay 2 (Digene HPV Genotyping RH Test, Qiagen Gaithersburg, MD). In a subset of samples of each group, HPV genotype results were then compared. Results: Of 28 samples genotyped by linear assay 1, 22 (78.6%) demonstrated multiple infections with HPV-16 and other hrHPV types 18, 45 and/or 52. In another set of 38 samples genotyped by linear assay 2, 28 (68.4%) were mostly single infections by hrHPV type 16 or 18. Interestingly, 4 samples that had been tested by both kits showed discordant results. Conclusions: In a limited-resource area such as in Indonesia, country with a high prevalence of HPV infection a reliable cervical screening test in general population for early hrHPV detection is needed. Geographical variation in HPV genotyping result might have impacts for HPV prevalence and molecular epidemiology as the distribution in HPV genotypes should give clear information to assess the impact of HPV prophylactic vaccines.

The Effects of High Temperature on Infection by Potato virus Y, Potato virus A, and Potato leafroll virus

  • Chung, Bong Nam;Canto, Tomas;Tenllado, Francisco;Choi, Kyung San;Joa, Jae Ho;Ahn, Jeong Joon;Kim, Chun Hwan;Do, Ki Seck
    • The Plant Pathology Journal
    • /
    • 제32권4호
    • /
    • pp.321-328
    • /
    • 2016
  • We examined the effects of temperature on acquisition of Potato virus Y-O (PVY-O), Potato virus A (PVA), and Potato leafroll virus (PLRV) by Myzus persicae by performing transmission tests with aphids that acquired each virus at different temperatures. Infection by PVY-O/PVA and PLRV increased with increasing plant temperature in Nicotiana benthamiana and Physalis floridana, respectively, after being transmitted by aphids that acquired them within a temperature range of $10-20^{\circ}C$. However, infection rates subsequently decreased. Direct qRT-PCR of RNA extracted from a single aphid showed that PLRV infection increased in the $10-20^{\circ}C$ range, but this trend also declined shortly thereafter. We examined the effect of temperature on establishment of virus infection. The greatest number of plants became infected when N. benthamiana was held at $20^{\circ}C$ after inoculation with PVY-O or PVA. The largest number of P. floridana plants became infected with PLRV when the plants were maintained at $25^{\circ}C$. PLRV levels were highest in P. floridana kept at $20-25^{\circ}C$. These results indicate that the optimum temperatures for proliferation of PVY-O/PVA and PLRV differed. Western blot analysis showed that accumulations of PVY-O and PVA coat proteins (CPs) were lower at $10^{\circ}C$ or $15^{\circ}C$ than at $20^{\circ}C$ during early infection. However, accumulation increased over time. At $25^{\circ}C$ or $30^{\circ}C$, the CPs of both viruses accumulated during early infection but disappeared as time passed. Our results suggest that symptom attenuation and reduction of PVY-O and PVA CP accumulation at higher temperatures appear to be attributable to increased RNA silencing.

감나무 둥근무늬낙엽병의 발생과 병원균(Mycosphaerella nawae)의 전염원 동태 (Ecology of Disease Outbreak of Circular Leaf Spot of Persimmon and Inoculum Dynamics of Mycosphaerella nawae)

  • 권진혁;박창석
    • 식물병연구
    • /
    • 제10권4호
    • /
    • pp.209-216
    • /
    • 2004
  • The circular leaf spot of persimmon is occurred almost every place where persimmon is cultivated, especially the disease outbreak severely in southern part of Korea. The disease reveals unusually long incubation period after pathogen invade into leaf tissue and no practical control measure is available once the symptom has appeared. Most of the farmers just follow the suggested spray schedules calculated on the basis of weather condition of ordinary years. Therefore the damages due to circular leaf spot greatly differ year after year. In this article, we tried to describe and summarized the investigation on the circular leaf spot pathogen, Mycosphaerella nawae, related to disease outbreak such as overwintering of pathogen, inoculum formation and spread, incubation period after infection, and secondary inoculum. With the summary of these results, we suggest the disease cycle of circular leaf spot of persimmon. The pathogen overwinters in diseased leaves as mycelial form or pseudoperithecial premodium. The pseudoperitheria become matured in spring as the temperature raise and forms asci and ascospores. The maturation of pseudoperithecia are closely related to the temperatures during March and early April. The ascospores completely mature in early May and the ascospores released when the pseudoperithecia absorbed enough moisture after rainfall. The release of ascospores are diverse greatly with the variation of maturity of pseudoperithecia. Generally the spore start to release from middle of May to early of July. Duration of ascospore release is depend on the weather condition of particular year, especially amount and number of precipitation. The ascospores produced from pseudoperithecia is known to the only inoculum for circular leaf spot disease. But according to the results obtained from our investigations, the conidia formed on the lesions which incited by natural infection. This conidia are infectious to persimmon leaves and formed identical symptom as natural infection. The time of producing secondary inoculum of circular leaf spot of persimmon is considered too late to develop new disease. Generally the importance of secondary inoculum is low but the conidia produced in early September are competent to develop new disease and new infection also significantly affect to harvest of persimmon. The importance of circular leaf spot disease is recognized well to farmers. The approaches to control of the disease should be initiated on the basis of the knowledges of inoculum dynamics and ecology of disease development. The forecasting system for circular leaf spot is need to be developed.