• Title/Summary/Keyword: early ages (of concrete)

Search Result 191, Processing Time 0.03 seconds

Mechanical and Durable Properties of Concrete Containing Slag and Limestone Powder (석회석 미분말을 사용한 3성분계 콘크리트의 역학적 특성 및 내구성능 연구)

  • 오병환;박대균;박재명;이종화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.569-574
    • /
    • 2002
  • Generally, the limestone powder is known to have some advantages in rheology of fresh concrete, resistance of material separation, and enhancement of strength at early ages. Recently, great attention is being paid to limestone blended cements in the manufacture of concrete, especially in the countries of Europe. The purpose of the present study is to establish the mechanical and durable properties of concrete containing slag and limestone powder. In this paper, the chloride ion penetration test, rapid carbonation test and rapid freezing-thawing test is carried out to study durability of concrete with various content of limestone powder. Futhermore, the strength of concrete is evaluated with various ages.

  • PDF

Material property evaluation of high strength concrete using conventional and nondestructive testing method (재래 및 비파괴검사를 이용한 고강도 콘크리트의 재료특성에 관한 연구)

  • 조영상
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.629-634
    • /
    • 2001
  • This study is to characterize the material property of early age high performance concrete emphasizing compressive strength using nondestructive testing methods. Three high performance concrete slabs of 600, 850 and 1100kg/$cm^{2}$ compressive strengths were prepared together with cylinders from same batches. Cylinder tests were peformed at the ages of 7, 14, 21 and 28 days after pouring. Using the impact echo method, the compression wave velocities were obtained based on different high performance concrete ages and compressive strengths. The equation to obtain the compressive strengths of high performance concrete has been developed using the obtained compression wave velocities. Using the SASW (spectral analysis of surface wave) method, the equation have also been developed to obtain the compressive strengths of high performance concrete based on the surface wave velocities.

  • PDF

The Properties of Hardened Slag by Alkali and Curing Method (알칼리 첨가 및 양생방법에 따른 슬래그 경화체의 특성)

  • 김원기;소정섭;배동인
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.27-32
    • /
    • 2002
  • In this research influences of type and concentration of alkali activator and curing condition on the hydration, and properties of alkali activated blast furnace slag(AAS) concrete were investigated. Sodium carbonate and sulfate were used as alkali activators and their concentration were 4~10 weight percent with Na$_2$O equivalent to binder. The curing conditions were standard curing using 23$^{\circ}C$ water and activated curing chamber at $65^{\circ}C$. Results show that in case of sodium carbonate addition high early strengths were gained by activation of early hydration, but later strength gained was slight. On the other side sodium sulfate strengths were continuously increased with adding amount and ages. Steam curing activated early hydration so that early strengths were improved but later strengths were similar to standard curing. The strength reduction of AAS mortar with sodium sulfate was less than OPC mortar in 5% sulfuric acid solution so that AAS concrete can be useful for acid-resistance concrete.

  • PDF

Mechanical Properties of Concrete with Different Curing Temperatures (양생온도변화에 따른 콘크리트의 재료역학적 특성)

  • 김진근;한상훈;양은익;송영철;방기성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.42-47
    • /
    • 1998
  • Experimental investigation was undertaken to determine early-age strength development and the relationships between the mechanical properties of type I, V and V/fly ash cement concrete with different curing temperature. The tests for mechanical properties, i.e., compressive strength, splitting tensile strength and modulus of elasticity were carried out for type, I, V and V with 15% replacement with fly ash cement concrete. For this purpose 480 concrete cylinders cured at isothermal conditions of 10, 23, 35 and 5$0^{\circ}C$ were tested at ages of 1, 3, 7 and 28days. According to the experiments, the concrete subjected to high temperature at early age got greater strength at early age, however eventually lower strength at late age. The derived relationships between compressive strength and splitting tensile strength and elastic modulus of elasticity appeared to be identical for all types of cement.

  • PDF

Suggestion of Vibration Criteria for Fresh Concrete Considering Early Strength Increase (Fresh 콘크리트의 초기 강도 증가를 고려한 진동규준치 제안)

  • Park, Sun-Joon;Park, Yeon-Soo;Kang, Sung-Hoo;Kim, Hong-Ki;Kim, Eung-Rok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.6
    • /
    • pp.453-460
    • /
    • 2002
  • In this paper, vibration criteria for fresh concrete are suggested considering relationship of strength and ages of concrete. Vibration criteria of fresh concrete subjected to construction vibration are not to be certain in abroad countries without question within a country. Before 12 hours cured, vibration criterion is suggested 0.25 cm/s. Used 4.0 cm/s by vibration criterion after 28 days. And the interval extent used relation with strength and ages of concrete. Vibration criteria proposed in this paper are thought may satisfy properties of fresh concrete as well as generally used those in domestic. Also, the actual ground vibrations due to pile driving have been measured, and data are analyze using the nitration equation applying to reliability index.

Basic Creep Model by Considering Autogenous Shrinkage

  • Lee, Yun;Kim, Jin-Keun;Kim, Min-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.1071-1076
    • /
    • 2003
  • Basic creep of concrete during very early ages is an important factor on the behavior of young concrete and a great deal of research has been executed. However, in recent studies, it was revealed that the basic creep measured by sealed concrete was inaccurate, especially for high strength concrete because of autogenous shrinkage at early age. This paper presents the results from experimental study that investigate to explore the effect of autogenous shrinkage in basic creep. More specifically, four different mix proportions were casted and the primary variables were water-cement ratios. Through this research, it was found that the differences between apparent specific creep and real specific creep were remarkable in low water-cement ratio at early age. Therefore, it is recommended to modify existing creep model by considering autogenous shrinkage

  • PDF

Development of Stress-Strain Relationship Considering Strength and Age of Concrete (콘크리트의 강도와 재령을 고려한 응력-변형률 관계식의 개발)

  • 오태근;이성태;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.447-456
    • /
    • 2001
  • Many investigators have tried to represent the nonlinear behavior of stress-strain relationship of concrete using mathematical curves. Most of empirical expressions for stress-strain relationship, however, have focused on old age concrete, and were not able to represent well the behavior of concrete at an early age. Where wide understanding on the behavior of concrete from early age to old age is very important in evaluating the durability and service life of concrete structures. In this paper, effect of 5 different strength levels and ages of from 12 hours to 28 days on compressive stress-strain relationship was observed experimentally and analytically. Tests were carried out on $\phi$100${\times}$200mm cylindrical specimens water-cured at 20${\pm}$3$^{\circ}C$. An analytical expression of stress-stain relationship with strength and age was developed using regression analyses on experimental results. For the verification of the proposed model, the model was compared with present and existing experimental data and some existing models. The analysis shows that the proposed model predicts well experimental data and describes well effect of strength and age on stress-strain relationship.

Effect of Curing Temperature and Aging on the mechanical Properties of Concrete (I) -Experimental Results and Analysis- (콘크리트의 재료역학적 성질에 대한 양생온도와 재령의 효과(I) -실험결과 및 분석을 중심으로-)

  • 한상훈;김진근;송영철
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.23-34
    • /
    • 2000
  • This paper reports the effects of curing temperature and aging on the strength and the modulus of elasticity. In oder to determine the strength and the modulus of elasticity with curing temperature and aging, experimental and analytical methods are adopted. The tests of 480 cylinders are carried out for type I, V and V with 15 percent replacement of fly ash cement concretes, which are cured at isothermal conditions of 10, 23, 35 and 5$0^{\circ}C$. and the concrete cylinders are tested at the ages of 1, 3, 7 and 28 days. According to the experimental results, the concrete subjected to high temperature at early ages attaines higher early-age compressive and splitting tensile strength but eventually attaines lower later-age compressive and splitting tensile strength. Even if modulus of elasticity has the same tendency, the variation of modulus of elasticity with curing temperature is smaller than that of compressive strength. Based on these experimental results, the relationships among compressive strength, modulus of elasticity and splitting tensile strength are proposed considering the effects of curing temperature, aging and cement type.

A Study On the Durability of High Volume Fly Ash Concrete (High Volume 플라이애시 콘크리트의 내구성 연구)

  • 조현수;김병진;이진용;이광명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.455-460
    • /
    • 2000
  • Fly ash can be used as cement replacement material and can also produce the durable concrete. According to the results, the compressive strength of concrete containing fly ash is slightly lower than that of normal concrete at early ages, however, the long-term compressive strength is significantly higher beyond 90 days, and it increases the durability of concrete as well.

  • PDF

Comparison of Strength Estimation Models for Early Age Concrete (초기재령 콘크리트의 강도 예측모델 비교)

  • 황수덕;채요한;이광명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.72-77
    • /
    • 2000
  • In order to estimate strength of concrete, many attempts have been made. However, it is difficult to estimate concrete strength with ages. In this study, the factors influencing the strength of concrete such as w/c ratio and curing temperature, were investigated and results predicted by the established strength models were compared to measured strength data. It is found that in general the estimated values are approximate to the test results. In order to accurately predict the concrete strength curing temperature factor should be employed in the strength models.

  • PDF