• Title/Summary/Keyword: e-printing

Search Result 240, Processing Time 0.031 seconds

Electrical Characterization of Ultrathin Film Electrolytes for Micro-SOFCs

  • Shin, Eui-Chol;Ahn, Pyung-An;Jo, Jung-Mo;Noh, Ho-Sung;Hwang, Jaeyeon;Lee, Jong-Ho;Son, Ji-Won;Lee, Jong-Sook
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.404-411
    • /
    • 2012
  • The reliability of solid oxide fuel cells (SOFCs) particularly depends on the high quality of solid oxide electrolytes. The application of thinner electrolytes and multi electrolyte layers requires a more reliable characterization method. Most of the investigations on thin film solid electrolytes have been made for the parallel transport along the interface, which is not however directly related to the fuel cell performance of those electrolytes. In this work an array of ion-blocking metallic Ti/Au microelectrodes with about a $160{\mu}m$ diameter was applied on top of an ultrathin ($1{\mu}m$) yttria-stabilized-zirconia/gadolinium-doped-ceria (YSZ/GDC) heterolayer solid electrolyte in a micro-SOFC prepared by PLD as well as an 8-${\mu}m$ thick YSZ layer by screen printing, to study the transport characteristics in the perpendicular direction relevant for fuel cell operation. While the capacitance variation in the electrode area supported the working principle of the measurement technique, other local variations could be related to the quality of the electrolyte layers and deposited electrode points. While the small electrode size and low temperature measurements increaseed the electrolyte resistances enough for the reliable estimation, the impedance spectra appeared to consist of only a large electrode polarization. Modulus representation distinguished two high frequency responses with resistance magnitude differing by orders of magnitude, which can be ascribed to the gadolinium-doped ceria buffer electrolyte layer with a 200 nm thickness and yttria-stabilized zirconia layer of about $1{\mu}m$. The major impedance response was attributed to the resistance due to electron hole conduction in GDC due to the ion-blocking top electrodes with activation energy of 0.7 eV. The respective conductivity values were obtained by model analysis using empirical Havriliak-Negami elements and by temperature adjustments with respect to the conductivity of the YSZ layers.

A Study Funology for Reformatting to App Book: Focused on 'Moo, Baa, La La La!' of App Book (앱북(App Book)으로의 매체 전환을 위한 퍼놀로지(Funology)에 관한 연구: '무, 바, 라라라!(Moo, Baa, La La La!)' 앱북(App Book)을 중심으로)

  • Kwon, Jieun;Kim, Boyoung
    • Cartoon and Animation Studies
    • /
    • s.30
    • /
    • pp.221-243
    • /
    • 2013
  • Recently, traditional books based on printing on the paper have expanded to e-book media in smart device because of developing digital technology. Especially, app book applied application makes users' experience increase and provides immersion to them, because it allows them basically delivering information, educational effect and fun elements with multimedia technology. There are various experimental trials to make enhance effect of reformatting for application media. The purpose of this study is to analyze reformatting effect for app book with funology which is convergence of digital technology and a fun. Then this article would provide design guide and be applied to new application contents. For this research, the first of all, we would discuss concept and elements of funology by publication including thesis, articles, and books. Secondly, this article will be focused on 'Moo, Baa, La La La!' which is reformatting application for iPad to analyze type of funology. Thirdly, we would make sure that app book makes users get emotional effect comparing original book by FGI(Focus Group Interview). In conclusion, sensitive funology used the sound allows user emotional effect and they prefer to intuitive and immediate motion and response of interactive funology. In other way, funology of fun in itself which is strong concept in original book diminishes in app book. Then users concentrate interactive factors like game structure. This results make that app books could be created by strength of original contents and advantage of funology. Therefore this makes us expect the possibility of reformatting effect with funology and we need to discuss the points of issue that there are considerations and limitations to successful app book for users.

Effects of Particle Size on Properties of PZT -Based Thick Films (입자 크기가 PZT계 압전 후막의 물성에 미치는 영향)

  • 김동명;김정석;천채일
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.375-380
    • /
    • 2004
  • Pb(Ni$\_$1/3/Nb$\_$2/3/)O$_3$-PbZrO$_3$-PbTiO$_3$ thick films were screen-printed on platinized alumina substrates and fired at 800-1000$^{\circ}C$. Two kinds of powders with different particle size were prepared by attrition and ball milling methods. Effects of particle size of starting material on the microstructure and electrical properties of the thick films were investigated. Average particle size of attrition milled-powder (0.44 ${\mu}$m) was much smaller than that of ball milled-powder (2.87 ${\mu}$m). Average grain size of the thick film prepared from attrition-milled powder was smaller than that of the thick film prepared from ball-milled powder at the sintering temperature of 800$^{\circ}C$. However, the difference in average particle size became smaller with increasing the sintering temperature. Thick films prepared from attrition-milled powders showed more uniform and denser microstructures at all firing temperatures. Thick films prepared from attrition-milled powders had better electrical properties at the firing temperature above 900$^{\circ}C$ than thick films prepared from ball-milled powders. Dielectric constant, remanent polarization and coercive field of the thick film prepared from attrition-milled powders and fired at 900$^{\circ}C$ were 559, 16.3 ${\mu}$C/cm$^2$, and 51.3 kV/cm, respectively.

Electrical Characteristic of IGZO Oxide TFTs with 3 Layer Gate Insulator

  • Lim, Sang Chul;Koo, Jae Bon;Park, Chan Woo;Jung, Soon-Won;Na, Bock Soon;Lee, Sang Seok;Cho, Kyoung Ik;Chu, Hye Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.344-344
    • /
    • 2014
  • Transparent amorphous oxide semiconductors such as a In-Ga-Zn-O (a-IGZO) have advantages for large area electronic devices; e.g., uniform deposition at a large area, optical transparency, a smooth surface, and large electron mobility >10 cm2/Vs, which is more than an order of magnitude larger than that of hydrogen amorphous silicon (a-Si;H).1) Thin film transistors (TFTs) that employ amorphous oxide semiconductors such as ZnO, In-Ga-Zn-O, or Hf-In-Zn-O (HIZO) are currently subject of intensive study owing to their high potential for application in flat panel displays. The device fabrication process involves a series of thin film deposition and photolithographic patterning steps. In order to minimize contamination, the substrates usually undergo a cleaning procedure using deionized water, before and after the growth of thin films by sputtering methods. The devices structure were fabricated top-contact gate TFTs using the a-IGZO films on the plastic substrates. The channel width and length were 80 and 20 um, respectively. The source and drain electrode regions were defined by photolithography and wet etching process. The electrodes consisting of Ti(15 nm)/Al(120 nm)/Ti(15nm) trilayers were deposited by direct current sputtering. The 30 nm thickness active IGZO layer deposited by rf magnetron sputtering at room temperature. The deposition condition is as follows: a rf power 200 W, a pressure of 5 mtorr, 10% of oxygen [O2/(O2+Ar)=0.1], and room temperature. A 9-nm-thick Al2O3 layer was formed as a first, third gate insulator by ALD deposition. A 290-nm-thick SS6908 organic dielectrics formed as second gate insulator by spin-coating. The schematic structure of the IGZO TFT is top gate contact geometry device structure for typical TFTs fabricated in this study. Drain current (IDS) versus drain-source voltage (VDS) output characteristics curve of a IGZO TFTs fabricated using the 3-layer gate insulator on a plastic substrate and log(IDS)-gate voltage (VG) characteristics for typical IGZO TFTs. The TFTs device has a channel width (W) of $80{\mu}m$ and a channel length (L) of $20{\mu}m$. The IDS-VDS curves showed well-defined transistor characteristics with saturation effects at VG>-10 V and VDS>-20 V for the inkjet printing IGZO device. The carrier charge mobility was determined to be 15.18 cm^2 V-1s-1 with FET threshold voltage of -3 V and on/off current ratio 10^9.

  • PDF

Interfacial Reaction and Joint Strength of the Sn-58Bi Solder Paste with ENIG Surface Finished Substrate (Sn-58Bi 솔더 페이스트와 ENIG 표면 처리된 기판 접합부의 계면 반응 및 접합강도)

  • Shin, Hyun-Pil;Ahn, Byung-Wook;Ahn, Jee-Hyuk;Lee, Jong-Gun;Kim, Kwang-Seok;Kim, Duk-Hyun;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.64-69
    • /
    • 2012
  • Sn-Bi eutectic alloy has been widely used as one of the key solder materials for step soldering at low temperature. The Sn-58Bi solder paste containing chloride flux was adopted to compare with that using the chloride-free flux. The paste was applied on the electroless nickel-immersion gold (ENIG) surface finish by stencil printing, and the reflow process was then performed at $170^{\circ}C$ for 10 min. After reflow, the solder joints were aged at $125^{\circ}C$ for 100, 200, 300, 500 and 1000 h in an oven. The interfacial microstructures were obtained by using scanning electron microscopy (SEM), and the composition of intermetallic compounds (IMCs) was analyzed using energy dispersive spectrometer (EDS). Two different IMC layers, consisting of $Ni_3Sn_4$ and relatively very thin Sn-Bi-Ni-Au were formed at the solder/surface finish interface, and their thickness increased with increasing aging time. The wettability of solder joints was investigated by wetting balance test. The mechanical property of each aging solder joint was evaluated by the ball shear test in accordance with JEDEC standard (JESD22-B117A). The results show that the highest shear force was measured when the aging time was 100 h, and the fracture mode changed from ductile fracture to brittle fracture with increasing aging time. On the other hand, the chloride flux in the solder paste did not affect the shear force and fracture mode of the solder joints.

Pulsed Laser Deposition을 이용하여 GZO/Glass 기판상에 성장시킨 염료감응형 태양전지용 $TiO_2$ Blocking Layer의 특성 연구

  • Yeo, In-Hyeong;Kim, Ji-Hong;No, Ji-Hyeong;Kim, Jae-Won;Do, Gang-Min;Sin, Ju-Hong;Jo, Seul-Gi;Park, Jae-Ho;Mun, Byeong-Mu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.259-259
    • /
    • 2011
  • 염료감응형 태양전지(Dye-Sensitized Solar Cells:DSSC)는 환경 친화적이며, 저가의 공정에 대한 가능성으로 기존의 고가의 결정질 실리콘 태양전지의 경제적인 대안으로 각광을 받고 있다. 최근 염료감응형 태양전지는 투명 전도성 산화막(Transparent Conducting Oxide : TCO)으로 사용되는 Fluorine Tin Oxide (FTO)가 증착된 유리기판 위에 주로 제작된다. FTO는 낮은 비저항과 가시광선 영역에서 높은 투과도를 가지는 우수한 전기-광학적 특성을 갖지만, 비교적 공정이 까다로운 Chemical Vapor Deposition (CVD)법으로 제조하며, 전체 공정비용의 60%를 차지하는 높은 생산단가로 인해 현재 FTO를 대체할 재료개발 연구가 활발히 진행되고 있다. 그 중 ZnO (Zinc Oxide)는 우수한 전기-광학적 특성과 비교적 저렴한 가격으로 새로운 TCO로써 주목받고 있다. ZnO는 넓은 energy band gap (3.4 [eV])의 육방정계 울자이트(hexagonal wurtzite) 결정 구조를 가지는II-VI족 n형 반도체 물질이며, III족 금속원소인 Al, Ga 및 In 등의 불순물을 첨가하면 TCO로서 우수한 전기-광학적 특성과 안정성을 나타낸다. 이들 물질중 $Zn^{2+}$ (0.060 nm)의 이온반경과 유사한 $Ga^{2+}$0.062 nm) 이온이 ZnO의 격자반경을 최소화 시킬 수 있다는 장점으로 최근 주목 받고 있다. 하지만 Ga-doped ZnO (GZO)의 경우 DSC에 사용되는 루테늄 계열의 산성 염료 하에 장시간 두면 표면이 파괴되는 문제가 발생하며, $TiO_2$ paste를 Printing 후 열처리하는 과정에서도 박막의 파괴가 발생할 수 있다. 이를 방지하기 위해 $TiO_2$ Blocking Layer를 GZO 투명전극 위에 증착하였다. 또한, $TiO_2$ Blocking Layer를 적용한 GZO 박막을 전면전극으로 이용하여 DSC를 제작하여 효율을 확인하였다. 2wt%의 $Ga_2O_3$가 도핑된 ZnO 박막은 20mTorr 400$^{\circ}C$에서 Pulsed Laser Deposition (PLD)에 의해 성장되었고, $TiO_2$박막은 Ti 금속을 타겟으로 이용하여 30mTorr 400$^{\circ}C$에서 증착되었다. Scanning electron microscopy (FE-SEM)을 이용한 박막 분석 결과 $TiO_2$가 증착된 GZO 박막의 경우 표면 파괴가 일어나지 않았다. Solar Simulator을 이용하여 I-V특성 측정결과 상용 FTO를 사용한 DSC 수준의 효율을 나타내었다. 이에 따라 Pulsed Laser Deposition을 이용해 제작된 GZO 기판은 $TiO_2$ Blocking Layer를 이용하여 표면 파괴를 방지할 수 있었으며, 이는 향후 염료감응형 태양전지의 투명전극에 적용 가능 할 것으로 판단된다.

  • PDF

Preparation of Nanostructures Using Layer-by-Layer Assembly and Applications (층상자기조립법을 이용한 나노구조체의 제조와 응용)

  • Cho, Jin-Han
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.2
    • /
    • pp.81-90
    • /
    • 2010
  • We introduce a novel and versatile approach for preparing self-assembled nanoporous multilayered films with antireflective properties. Protonated polystyrene-block-poly (4-vinylpyrine) (PS-b-P4VP) and anionic polystyrene-block-poly (acrylic acid) (PS-b-PAA) block copolymer micelles (BCM) were used as building blocks for the layer-by-layer assembly of BCM multilayer films. BCM film growth is governed by electrostatic and hydrogen-bonding interactions between the oppositely BCMs. Both film porosity and film thickness are dependent upon the charge density of the micelles, with the porosity of the film controlled by the solution pH and the molecular weight (Mw) of the constituents. PS7K-b-P4VP28K/PS2K-b-PAA8K films prepared at pH 4 (for PS7K-b-P4VP28K) and pH 6 (for PS2K-b-PAA8K) are highly nanoporous and antireflective. In contrast, PS7K-b-P4VP28K/PS2K-b-PAA8K films assembled at pH 4/4 show a relatively dense surface morphology due to the decreased charge density of PS2K-b-PAA8K. Films formed from BCMs with increased PS block and decreased hydrophilic block (P4VP or PAA) size (e.g., PS36K-b-P4VP12K/PS16K-b-PAA4K at pH 4/4) were also nanoporous. Furthermore, we demonstrate that the nanostructured electrochemical sensors based on patterning methods show the electrochemical activities. Anionic poly(styrene sulfonate) (PSS) layers were selectively and uniformly deposited onto the catalase (CAT)-coated surface using the micro-contact printing method. The pH-induced charge reversal of catalase can provide the selective deposition of consecutive PE multilayers onto patterned PSS layers by causing the electrostatic repulsion between next PE layer and catalase. Based on this patterning method, the hybrid patterned multilayers composed of platinum nanoparticles (PtNP) and catalase were prepared and then their electrochemical properties were investigated from sensing $H_2O_2$ and NO gas. This study was based on the papers reported by our group. (J. Am. Chem. Soc. 128, 9935 (2006); Adv. Mater. 19, 4364 (2007); Electro. Mater. Lett. 3, 163 (2007)).

Studies on the fabrication and properties of $La_ 0.7Sr_0.3MnO_3$cathode contact prepared by glycine-nitrate process and solid state reaction method for the high efficient solid oxide fuel cells applications 0.3/Mn $O_{3}$ (고효율 고체산화물 연료전지 개발을 위한 자발 착화 연소 합성법과 고상반응법에 의한 $La_ 0.7Sr_0.3MnO_3$ 양극재료 제조 및 물성에 관한 연구)

  • Shin, Woong-Shun;Park, In-Sik;Kim, Sun-Jae;Park, Sung
    • Electrical & Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.141-149
    • /
    • 1997
  • L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ powders were prepared by both GNP(Glycine-Nitrate Process) and solid state reaction method in various of calcination temperature(800-1000.deg. C) and time in air. Also, L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ cathode contacts on YSZ(Yttria-Stabilized Zirconia) substrate were prepared by screen printing and sintering method as a function of sintering temperature(1100-1450.deg. C) in air. Sintering behaviors have been investigated by SEM(Scanning Electron Microscope) and porosity measurement. Compositional and structural characterization were carried out by X-ray diffractometer and ICP AES(Inductively Coupled Plasma-Atomic Emission Spectrometry) analysis. Electrical characterization was carried out by the electrical conductivity with linear 4 point probe method. As the calcination period increased in solid state reaction method, L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ phase increased. Although L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ single phase was obtained only for 48hrs at 1000.deg. C, in GNP method it was easy to get single and ultra-fine L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ powders with submicron particle size at 650.deg. C for 30min. The particle size and thickness of L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ cathode contact by solid state reaction method did not change during the heat treatment, while those by GNP method showed good sintering characteristics because initial powder size fabricated from GNP method is smaller than that fabricated from solid state reaction method. Based on enthalpy change from thermodynamic data and ICP-AES analysis, it was suggested to make cathode contact in composition of (L $a_{0.7}$S $r_{0.3}$)$_{0.91}$ Mn $O_{3}$ which have little second phase (L $a_{2}$Z $r_{2}$ $O_{7}$) for high efficient solid oxide fuel cells applications. As (L $a_{0.7}$S $r_{0.3}$)$_{0.91}$Mn $O_{3}$ cathode contact on YSZ substrate was sintering at 1250.deg. C the temperature that liquid phase sintering did not occur. It was possible to obtain proper cathode contacts with electrical conductivity of 150(S/cm) and porosity content of 30-40%.m) and porosity content of 30-40%.

  • PDF

A Study on Productivity Analysis of Quality Management System in Construction Site (건설현장 품질관리 자동화 시스템의 생산성 분석에 관한 연구)

  • Choi, Yeongjun;Oh, Hyunchul;Baek, Kihyun;Kim, Seok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.3
    • /
    • pp.17-26
    • /
    • 2024
  • Quality management work at construction sites demands substantial time and effort, involving the preparation of documents in Excel, approval processes, and the execution of quality tests. These Excel-based tasks include printing quality test reports, performing quality tests, generating and approving test reports, and preparing management ledgers. This division of processes extends the duration of work and diminishes efficiency. Accordingly, a cloud-based construction site quality management system was developed to enhance the productivity of quality management work. The purpose of this study is to analyze the productivity of the construction site quality management system, which is in the early stages of implementation at construction sites. This study implemented the construction site quality management system at a road construction site and scrutinized subsequent alterations in the quality management workflow before and after the implementation. Additionally, a survey was conducted among quality control engineers to collect data on work time both before and after the introduction of the construction site quality management system. Based on the collected data, the Monte-Carlo simulation method was applied to analyze the productivity improvement effect of the construction site quality management system, and the results were presented. The results of this study can serve as foundational data for future research endeavors focused on the automation of quality management works.

Application of CMP Process to Improving Thickness-Uniformity of Sputtering-deposited CdTe Thin Film for Improvement of Optical Properties (스퍼터링 증확 CdTe 박막의 두께 불균일 현상 개선을 위한 화학적기계적연마 공정 적용 및 광특성 향상)

  • Park, Ju-Sun;Lim, Chae-Hyun;Ryu, Seung-Han;Myung, Kuk-Do;Kim, Nam-Hoon;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.375-375
    • /
    • 2010
  • CdTe as an absorber material is widely used in thin film solar cells with the heterostructure due to its almost ideal band gap energy of 1.45 eV, high photovoltaic conversion efficiency, low cost and stable performance. The deposition methods and preparation conditions for the fabrication of CdTe are very important for the achievement of high solar cell conversion efficiency. There are some rearranged reports about the deposition methods available for the preparation of CdTe thin films such as close spaced sublimation (CSS), physical vapor deposition (PVD), vacuum evaporation, vapor transport deposition (VTD), closed space vapor transport, electrodeposition, screen printing, spray pyrolysis, metalorganic chemical vapor deposition (MOCVD), and RF sputtering. The RF sputtering method for the preparation of CdTe thin films has important advantages in that the thin films can be prepared at low growth temperatures with large-area deposition suitable for mass-production. The authors reported that the optical and electrical properties of CdTe thin film were closely connected by the thickness-uniformity of the film in the previous study [1], which means that the better optical absorbance and the higher carrier concentration could be obtained in the better condition of thickness-uniformity for CdTe thin film. The thickness-uniformity could be controlled and improved by the some process parameters such as vacuum level and RF power in the sputtering process of CdTe thin films. However, there is a limitation to improve the thickness-uniformity only in the preparation process [1]. So it is necessary to introduce the external or additional method for improving the thickness-uniformity of CdTe thin film because the cell size of thin film solar cell will be enlarged. Therefore, the authors firstly applied the chemical mechanical polishing (CMP) process to improving the thickness-uniformity of CdTe thin films with a G&P POLI-450 CMP polisher [2]. CMP process is the most important process in semiconductor manufacturing processes in order to planarize the surface of the wafer even over 300 mm and to form the copper interconnects with damascene process. Some important CMP characteristics for CdTe were obtained including removal rate (RR), WIWNU%, RMS roughness, and peak-to-valley roughness [2]. With these important results, the CMP process for CdTe thin films was performed to improve the thickness-uniformity of the sputtering-deposited CdTe thin film which had the worst two thickness-uniformities of them. Some optical properties including optical transmittance and absorbance of the CdTe thin films were measured by using a UV-Visible spectrophotometer (Varian Techtron, Cary500scan) in the range of 400 - 800 nm. After CMP process, the thickness-uniformities became better than that of the best condition in the previous sputtering process of CdTe thin films. Consequently, the optical properties were directly affected by the thickness-uniformity of CdTe thin film. The absorbance of CdTe thin films was improved although the thickness of CdTe thin film was not changed.

  • PDF