• Title/Summary/Keyword: e-Learning 2.0

Search Result 207, Processing Time 0.027 seconds

The Effects of a gerontological nursing clinical practice course using action learning on undergraduate nursing students (액션러닝을 활용한 노인간호학실습 수업 운영의 효과)

  • Kwon, Sang Min;Kwon, Mal-Suk;Park, Jee-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.421-427
    • /
    • 2016
  • This study was conducted to examine the effects of a gerontological nursing clinical practice course using action learning on undergraduate nursing students. The subjects were 75 undergraduate nursing students from Y University. Data were analyzed using SPSS/Win 21.0. There were significant improvements in problem solving (t=3.58, p<.001) and communication (t=4.15, p<.000) in the experimental group compared to the control group. This study provides evidence that gerontological nursing courses improve undergraduate nursing students' problem solving and communication skills. Accordingly, this course would be a useful teaching and learning method in nursing programs of outcome based curriculum.

A Novel Fundus Image Reading Tool for Efficient Generation of a Multi-dimensional Categorical Image Database for Machine Learning Algorithm Training

  • Park, Sang Jun;Shin, Joo Young;Kim, Sangkeun;Son, Jaemin;Jung, Kyu-Hwan;Park, Kyu Hyung
    • Journal of Korean Medical Science
    • /
    • v.33 no.43
    • /
    • pp.239.1-239.12
    • /
    • 2018
  • Background: We described a novel multi-step retinal fundus image reading system for providing high-quality large data for machine learning algorithms, and assessed the grader variability in the large-scale dataset generated with this system. Methods: A 5-step retinal fundus image reading tool was developed that rates image quality, presence of abnormality, findings with location information, diagnoses, and clinical significance. Each image was evaluated by 3 different graders. Agreements among graders for each decision were evaluated. Results: The 234,242 readings of 79,458 images were collected from 55 licensed ophthalmologists during 6 months. The 34,364 images were graded as abnormal by at-least one rater. Of these, all three raters agreed in 46.6% in abnormality, while 69.9% of the images were rated as abnormal by two or more raters. Agreement rate of at-least two raters on a certain finding was 26.7%-65.2%, and complete agreement rate of all-three raters was 5.7%-43.3%. As for diagnoses, agreement of at-least two raters was 35.6%-65.6%, and complete agreement rate was 11.0%-40.0%. Agreement of findings and diagnoses were higher when restricted to images with prior complete agreement on abnormality. Retinal/glaucoma specialists showed higher agreements on findings and diagnoses of their corresponding subspecialties. Conclusion: This novel reading tool for retinal fundus images generated a large-scale dataset with high level of information, which can be utilized in future development of machine learning-based algorithms for automated identification of abnormal conditions and clinical decision supporting system. These results emphasize the importance of addressing grader variability in algorithm developments.

Development of Mid-range Forecast Models of Forest Fire Risk Using Machine Learning (기계학습 기반의 산불위험 중기예보 모델 개발)

  • Park, Sumin;Son, Bokyung;Im, Jungho;Kang, Yoojin;Kwon, Chungeun;Kim, Sungyong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.781-791
    • /
    • 2022
  • It is crucial to provide forest fire risk forecast information to minimize forest fire-related losses. In this research, forecast models of forest fire risk at a mid-range (with lead times up to 7 days) scale were developed considering past, present and future conditions (i.e., forest fire risk, drought, and weather) through random forest machine learning over South Korea. The models were developed using weather forecast data from the Global Data Assessment and Prediction System, historical and current Fire Risk Index (FRI) information, and environmental factors (i.e., elevation, forest fire hazard index, and drought index). Three schemes were examined: scheme 1 using historical values of FRI and drought index, scheme 2 using historical values of FRI only, and scheme 3 using the temporal patterns of FRI and drought index. The models showed high accuracy (Pearson correlation coefficient >0.8, relative root mean square error <10%), regardless of the lead times, resulting in a good agreement with actual forest fire events. The use of the historical FRI itself as an input variable rather than the trend of the historical FRI produced more accurate results, regardless of the drought index used.

Machine Learning-Based Atmospheric Correction Based on Radiative Transfer Modeling Using Sentinel-2 MSI Data and ItsValidation Focusing on Forest (농림위성을 위한 기계학습을 활용한 복사전달모델기반 대기보정 모사 알고리즘 개발 및 검증: 식생 지역을 위주로)

  • Yoojin Kang;Yejin Kim ;Jungho Im;Joongbin Lim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.891-907
    • /
    • 2023
  • Compact Advanced Satellite 500-4 (CAS500-4) is scheduled to be launched to collect high spatial resolution data focusing on vegetation applications. To achieve this goal, accurate surface reflectance retrieval through atmospheric correction is crucial. Therefore, a machine learning-based atmospheric correction algorithm was developed to simulate atmospheric correction from a radiative transfer model using Sentinel-2 data that have similarspectral characteristics as CAS500-4. The algorithm was then evaluated mainly for forest areas. Utilizing the atmospheric correction parameters extracted from Sentinel-2 and GEOKOMPSAT-2A (GK-2A), the atmospheric correction algorithm was developed based on Random Forest and Light Gradient Boosting Machine (LGBM). Between the two machine learning techniques, LGBM performed better when considering both accuracy and efficiency. Except for one station, the results had a correlation coefficient of more than 0.91 and well-reflected temporal variations of the Normalized Difference Vegetation Index (i.e., vegetation phenology). GK-2A provides Aerosol Optical Depth (AOD) and water vapor, which are essential parameters for atmospheric correction, but additional processing should be required in the future to mitigate the problem caused by their many missing values. This study provided the basis for the atmospheric correction of CAS500-4 by developing a machine learning-based atmospheric correction simulation algorithm.

Development of Improvement Effect Prediction System of C.G.S Method based on Artificial Neural Network (인공신경망을 기반으로 한 C.G.S 공법의 개량효과 예측시스템 개발)

  • Kim, Jeonghoon;Hong, Jongouk;Byun, Yoseph;Jung, Euiyoup;Seo, Seokhyun;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.9
    • /
    • pp.31-37
    • /
    • 2013
  • In this study installation diameter, interval, area replacement ratio and ground hardness of applicable ground in C.G.S method should be mastered through surrounding ground by conducting modeling. Optimum artificial neural network was selected through the study of the parameter of artificial neural network and prediction model was developed by the relationship with numerical analysis and artificial neural network. As this result, C.G.S pile settlement and ground settlement were found to be equal in terms of diameter, interval, area replacement ratio and ground hardness, presented in a single curve, which means that the behavior pattern of applied ground in C.G.S method was presented as some form, and based on such a result, learning the artificial neural network for 3D behavior was found to be possible. As the study results of artificial neural network internal factor, when using the number of neural in hidden layer 10, momentum constant 0.2 and learning rate 0.2, relationship between input and output was expressed properly. As a result of evaluating the ground behavior of C.G.S method which was applied to using such optimum structure of artificial neural network model, is that determination coefficient in case of C.G.S pile settlement was 0.8737, in case of ground settlement was 0.7339 and in case of ground heaving was 0.7212, sufficient reliability was known.

An Analysis of Learning Interest and Self-Regulated Learning by Giftedness and Thinking Style (중등 과학영재와 일반학생의 사고양식 유형에 따른 학습흥미 및 자기조절학습의 차이 분석)

  • Lee, Hyunjoo;Chae, Yoojung
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.1
    • /
    • pp.57-68
    • /
    • 2018
  • The purpose of this study is to categorize learning style groups and to analyze students' learning interest and self-regulated learning abilities, according to their learning style and giftedness. One hundred and twenty-three (123) science-gifted student and 296 regular students participated in this study, responding to learning style, self-regulated learning, and learning interest questionnaires. Data were analyzed, using 2-stage cluster analysis, $x^2$ test, two way-MANOVA test, and $Scheff{\acute{e}}$ test. The results are as follows: First, by 2-stage cluster analysis, four groups were categorized: 'high-score thinking style,' 'external-liberal,' 'executive-conservative,' and 'low-score thinking style.' In the gifted group, high-score thinking style (51.2%) was the most popular, then executive-conservative (30.2%), external-liberal (17.1%), and low-score thinking style (1.6%); in the regular student group, the executive-conservative group was the biggest, then high-score thinking style (20.6%), external-liberal (11.6%), and then the low-score thinking style (8.7%). Second, in terms of learning interest, the analysis by thinking style showed that the high-score thinking style group had higher learning interest compared to the executive-conservative and the low-thinking style group. The high-thinking style group's thoughtful interest also scored the highest compared with the others. The gifted students' thoughtful interest and investigative interest also were higher than regular students '. Third, in terms of the self-regulated learning, the analysis by thinking style showed that the high-score thinking style group showed higher scores on all sub-variances than other groups, especially having highest control-belief scores. Also, gifted students had higher scores on control-belief and searching information. Based on these results, the ways for effective education and support were discussed.

Transition from Conventional to Reduced-Port Laparoscopic Gastrectomy to Treat Gastric Carcinoma: a Single Surgeon's Experience from a Small-Volume Center

  • Kim, Ho Goon;Kim, Dong Yi;Jeong, Oh
    • Journal of Gastric Cancer
    • /
    • v.18 no.2
    • /
    • pp.172-181
    • /
    • 2018
  • Purpose: This study aimed to evaluate the surgical outcomes and investigate the feasibility of reduced-port laparoscopic gastrectomy using learning curve analysis in a small-volume center. Materials and Methods: We reviewed 269 patients who underwent laparoscopic distal gastrectomy (LDG) for gastric carcinoma between 2012 and 2017. Among them, 159 patients underwent reduced-port laparoscopic gastrectomy. The cumulative sum technique was used for quantitative assessment of the learning curve. Results: There were no statistically significant differences in the baseline characteristics of patients who underwent conventional and reduced-port LDG, and the operative time did not significantly differ between the groups. However, the amount of intraoperative bleeding was significantly lower in the reduced-port laparoscopic gastrectomy group (56.3 vs. 48.2 mL; P<0.001). There were no significant differences between the groups in terms of the first flatus time or length of hospital stay. Neither the incidence nor the severity of the complications significantly differed between the groups. The slope of the cumulative sum curve indicates the trend of learning performance. After 33 operations, the slope gently stabilized, which was regarded as the breakpoint of the learning curve. Conclusions: The surgical outcomes of reduced-port laparoscopic gastrectomy were comparable to those of conventional laparoscopic gastrectomy, suggesting that transition from conventional to reduced-port laparoscopic gastrectomy is feasible and safe, with a relatively short learning curve, in a small-volume center.

The Effect of the Fraction Comprehension and Mathematical Attitude in Fraction Learning Centered on Various Representation Activities (다양한 표상활동 중심 분수학습이 분수의 이해 및 수학적 태도에 미치는 효과)

  • Ahn, Ji Sun;Kim, Min Kyeong
    • Communications of Mathematical Education
    • /
    • v.29 no.2
    • /
    • pp.215-239
    • /
    • 2015
  • A goal of this study is figuring out how fraction learning centered on various representation activities influences the fraction comprehension and mathematical attitudes. The study focused on 33 4th-grade students of B elementary school in Seoul. In the study, 15 fraction learning classes comprising enactive, iconic, and symbolic representations took place over 6 weeks. After the classes, the ratio of the students who achieved relational understanding increased and the students averagely recorded 90 pt or more on the fraction comprehension test I, II and III. Two-dependent samples t-test was conducted to analyze a significant difference in mathematical attitudes between pre-test and post-test. On the test result, there was the meaningful difference with 0.01 level of significance. To conclude, the fraction learning centered on various representation activities improves students' relational understanding and fraction understanding. In addition, the fraction learning centered on various representation activities gives positive influences on mathematical attitudes since it increases learning orientation, self-control, interests, value cognition, and self-confidence of the students and decreases fears of the students.

An intelligent method for pregnancy diagnosis in breeding sows according to ultrasonography algorithms

  • Jung-woo Chae;Yo-han Choi;Jeong-nam Lee;Hyun-ju Park;Yong-dae Jeong;Eun-seok Cho;Young-sin, Kim;Tae-kyeong Kim;Soo-jin Sa;Hyun-chong Cho
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.365-376
    • /
    • 2023
  • Pig breeding management directly contributes to the profitability of pig farms, and pregnancy diagnosis is an important factor in breeding management. Therefore, the need to diagnose pregnancy in sows is emphasized, and various studies have been conducted in this area. We propose a computer-aided diagnosis system to assist livestock farmers to diagnose sow pregnancy through ultrasound. Methods for diagnosing pregnancy in sows through ultrasound include the Doppler method, which measures the heart rate and pulse status, and the echo method, which diagnoses by amplitude depth technique. We propose a method that uses deep learning algorithms on ultrasonography, which is part of the echo method. As deep learning-based classification algorithms, Inception-v4, Xception, and EfficientNetV2 were used and compared to find the optimal algorithm for pregnancy diagnosis in sows. Gaussian and speckle noises were added to the ultrasound images according to the characteristics of the ultrasonography, which is easily affected by noise from the surrounding environments. Both the original and noise added ultrasound images of sows were tested together to determine the suitability of the proposed method on farms. The pregnancy diagnosis performance on the original ultrasound images achieved 0.99 in accuracy in the highest case and on the ultrasound images with noises, the performance achieved 0.98 in accuracy. The diagnosis performance achieved 0.96 in accuracy even when the intensity of noise was strong, proving its robustness against noise.

A Study on the Linearity Synapse Transistor of Analog Memory Devices in Self Learning Neural Network Integrated Circuits (자기인지 신경회로망에서 아날로그 기억소자의 선형 시냅스 트랜지스터에 관한연구)

  • 강창수
    • Electrical & Electronic Materials
    • /
    • v.10 no.8
    • /
    • pp.783-793
    • /
    • 1997
  • A VLSI implementation of a self-learning neural network integrated circuits using a linearity synapse transistor is investigated. The thickness dependence of oxide current density stress current transient current and channel current has been measured in oxides with thicknesses between 41 and 112 $\AA$, which have the channel width $\times$ length 10 $\times$1${\mu}{\textrm}{m}$, 10 $\times$ 0.3${\mu}{\textrm}{m}$ respectively. The transient current will affect data retention in synapse transistors and the stress current is used to estimate to fundamental limitations on oxide thicknesses. The synapse transistor has represented the neural states and the manipulation which gaves unipolar weights. The weight value of synapse transistor was caused by the bias conditions. Excitatory state and inhitory state according to weighted values affected the drain source current.

  • PDF