• Title/Summary/Keyword: e-AG

Search Result 644, Processing Time 0.025 seconds

Physiological Activity of Sarcodon aspratus Extracts (능이버섯(Sarcodon aspratus) 추출물의 생리활성)

  • 송재환;이현숙;황진국;한정환;노정근;금동혁;박기문
    • Food Science of Animal Resources
    • /
    • v.23 no.2
    • /
    • pp.172-179
    • /
    • 2003
  • This study was carried out to find the preventive medical and therapeutic effects of Sarcodon asparatus on adult disease by employing several biological and biochemical assays. Nitrate scavenging ability(NSA) of Sarcodan asparatus extracts was displayed up to 99.9% at pH 1.2 in a dose-dependent manner. They also had 90.4% electron donating ability(EDA) at the concentration of 0.1 mg/mL. Extracts of Sarcodon asparatus were also able to function as a powerful antioxidant at all concentrations(0.01∼l.0 mg/mL). Furthermore, we observed that 1 mg/mL concentration of the extracts was more powerful than BHT, With respect to fibrolytic activity, Sarcodon asparatus showed 1,843.8 unit/g, which was higher than streptokinase(1,189 unit/g). The inhibitory effects of the extracts on angiotensin converting enzyme, measured by the normal and pretreatment methods, were 53 and 58%, respectively. We also performed cytotoxicity effect of Sarcodon asparatus extracts on a various cancer cell lines. The growth inhibitory effects of the extracts(5.0 mg/mL) on A549, HeLa, AGS, and SK-Hep-1 cells were 78.9, 55.3, 69.0, and 42.5 %, respectively. Interestingly, Sarcodon asparatusextracts induced mutation on Salmonella typhimurium TA98 and TA100 when Ames test was done.

Antibacterial Activities of Bamboo Sap Against Salmonella Typhimurium and Inhibitory Effects in a Model Food System (죽력의 Salmonella typhimurium 등에 대한 항세균 활성과 Model Food System에서의 생육억제 효과)

  • Chung, Hee-Jong;Ko, Bong-Guk
    • Journal of the Korean Society of Food Culture
    • /
    • v.20 no.6
    • /
    • pp.709-714
    • /
    • 2005
  • Antibacterial activities of the freeze-dried bamboo sap dissolved into the water or 50% ethanol were determined and antimicrobial activity of bamboo sap dissolved into distilled water was most strong with 15 mm of the diameter of inhibiting clear zone against Listeria monocytogenes ATCC 19114 among gram positive bacteria tested, but it did not inhibit Bacillus subtilis ATCC 6633 at all, and the sap was most greatly inhibited the growth of Shigella dysenteriae ATCC 9361 among gram negative bacteria with 15 mm of the diameter of inhibiting clear zone. Bamboo sap dissolved into 50% ethanol most strongly inhibited the growth of L. monocytogenes ATCC 19114 and it also inhibited the growth of B. subtilis ATCC 6633 which did not show any with the sap dissolved into distilled water. The sap dissolved into 50% ethanol was most greatly inhibited the growth of S. dysenteriae ATCC 9361 among gram negative bacteria with 23 mm of the diameter of inhibiting clear zone, and it inhibited Vibrio parahaemolyticus WSDH 22, Vibrio vulnilicus ATCC 29307 and Escherichia coli O157 WSDH 54 with 16 mm of the diameter of inhibiting clear zone. However, Both of the saps dissolved in distilled water and 50% ethanol did not showed any inhibition against the lactic acid bacteria of Lactobacillus plantarum KCTC and Lactobacillus brevis KCTC. Most of the tested bacteria were more sensitive to the sap dissolved in 50% ethanol than the sap dissolved in distilled water. The lowest minimum inhibitory concentration of the bamboo sap dissolved into 50% ethanol was 0.6 mg eq./disc with L. monocytogenes ATCC 19114, but that of the sap dissolved into distilled water was 0.8 mg eq./disc with Staphylococcus epidermides ATCC 12228, S. dysenteriae ATCC 9361, L. monocytogenes ATCC 19114, Salmonella typhimurium WSU 2380 and V. parahaemolyticus WSDH 22. In a model food system of the sterilized chocolate milk, antibacterial activities of the sap dissolved into 50% ethanol were relatively stronger than those of the sap dissolved into distilled water and the activities against the bacteria tested were very similar each other. These result suggested the bamboo sap can be used as a natural food preservative.

Radiosynthesis of $[^{11}C]6-OH-BTA-1$ in Different Media and Confirmation of Reaction By-products. ($[^{11}C]6-OH-BTA-1$ 조제 시 생성되는 부산물 규명과 반응용매에 따른 표지 효율 비교)

  • Lee, Hak-Jeong;Jeong, Jae-Min;Lee, Yun-Sang;Kim, Hyung-Woo;Lee, Eun-Kyoung;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.3
    • /
    • pp.241-246
    • /
    • 2007
  • Purpose: $[^{11}C]6-OH-BTA-1$ ([N-methyl-$^{11}C$]2-(4'-methylaminophenyl)-6-hydroxybenzothiazole, 1), a -amyloid imaging agent for the diagnosis of Alzheimer's disease in PET, can be labeled with higher yield by a simple loop method. During the synthesis of $[^{11}C]1$, we found the formation of by-products in various solvents, e.g., methylethylketone (MEK), cyclohexanone (CHO), diethylketone (DEK), and dimethylformamide (DMF). Materials and Methods: In Automated radiosynthesis module, 1 mg of 4-aminophenyl-6-hydroxybenzothiazole (4) in 100 l of each solvent was reacted with $[^{11}C]methyl$ triflate in HPLC loop at room temperature (RT). The reaction mixture was separated by semi-preparative HPLC. Aliquots eluted at 14.4, 16.3 and 17.6 min were collected and analyzed by analytical HPLC and LC/MS spectrometer. Results: The labeling efficiencies of $[^{11}C]1$ were $86.0{\pm}5.5%$, $59.7{\pm}2.4%$, $29.9{\pm}1.8%$, and $7.6{\pm}0.5%$ in MEK, CHO, DEK and DMF, respectively. The LC/MS spectra of three products eluted at 14.4, 16.3 and 17.6 mins showed m/z peaks at 257.3 (M+1), 257.3 (M+1) and 271.3 (M+1), respectively, indicating their structures as 1, 2-(4'-aminophenyl)-6-methoxybenzothiazole (2) and by-product (3), respectively. Ratios of labeling efficiencies for the three products $([^{11}C]1:[^{11}C]2:[^{11}C]3)$ were $86.0{\pm}5.5%:5.0{\pm}3.4%:1.5{\pm}1.3%$ in MEK, $59.7{\pm}2.4%:4.7{\pm}3.2%:1.3{\pm}0.5%$ in CHO, $9.9{\pm}1.8%:2.0{\pm}0.7%:0.3{\pm}0.1%$ in DEK and $7.6{\pm}0.5%:0.0%:0.0%$ in DMF, respectively. Conclusion: The labeling efficiency of $[^{11}C]1$ was the highest when MEK was used as a reaction solvent. As results of mass spectrometry, 1 and 2 were conformed. 3 was presumed.

Mesothermal Gold Mineralization in the Boseong-Jangheung area, Chollanamdo-province (전라남도 보성-장흥지역의 중열수 금광화작용)

  • 허철호;윤성택;소칠섭
    • Economic and Environmental Geology
    • /
    • v.35 no.5
    • /
    • pp.379-393
    • /
    • 2002
  • Within the Boseong-Jangheung area of Korea, five hydrothermal gold (-silver) quartz vein deposits occur. They have the characteristic features as follows: the relatively gold-rich nature of e1ectrurns; the absence of Ag-Sb( -As) sulfosalt mineral; the massive and simple mineralogy of veins. They suggest that gold mineralization in this area is correlated with late Jurassic to Early Cretaceous, mesothermal-type gold deposits in Korea. Fluid inclusion data show that fluid inclusions in stage I quartz of the mine area homogenize over a wide temperature range of 200$^{\circ}$ to 460$^{\circ}$C with salinities of 0.0 to 13.8 equiv. wt. % NaCI. The homogenization temperature of fluid inclusions in stage II calcite of the mine area ranges from 150$^{\circ}$ to 254$^{\circ}$C with salinities of 1.2 to 7.9 equiv. wt. % NaCI. This indicates a cooling of the hydrothermal fluid with time towards the waning of hydrothermal activity. Evidence of fluid boiling including CO2 effervescence indicates that pressures during entrapment of auriferous fluids in this area range up to 770 bars. Calculated sulfur isotope composition of auriferous fluids in this mine area (${\delta}^34S$_{{\Sigma}S}$$\textperthousand$) indicates an igneous source of sulfur in auriferous hydrothermal fluids. Within the Sobaegsan Massif, two representative mesothermal-type gold mine areas (Youngdong and Boseong-Jangheung areas) occur. The ${\delta}^34S values of sulfide minerals from Youngdong area range from -6.6 to 2.3$\textperthousand$ (average=-1.4$\textperthousand$, N=66), and those from BoseongJangheung area range from -0.7 to 3.6$\textperthousand$ (average=1.6$\textperthousand$, N=39). These i)34S values of both areas are comparatively lower than those of most Korean metallic ore deposits (3 to 7TEX>$\textperthousand$). And, within the Sobaegsan Massif, the ${\delta}^34S values of Youngdong area are lower than those of Boseong-Jangheung area. It is inferred that the difference of ${\delta}^34S values within the Sobaegsan Massif can be caused by either of the following mechanisms: (1) the presence of at least two distinct reservoirs (both igneous, with ${\delta}^34S values of < -6 $\textperthousand$ and 2$\pm$2 %0) for Jurassic mesothermal-type gold deposits in both areas; (2) different degrees of the mixing (assimilation) of 32S-enriched sulfur (possibly sulfur in Precambrian pelitic basement rocks) during the generation and/or subsequent ascent of magma; and/or (3) different degrees of the oxidation of an H2S-rich, magmatically derived sulfur source ${\delta}^34S = 2$\pm$2$\textperthousand$) during the ascent to mineralization sites. According to the observed differences in ore mineralogy (especially, iron-bearing ore minerals) and fluid inclusions of quartz from the mesothermal-type deposits in both areas, we conclude that pyrrhotite-rich, mesothermal-type deposits in the Youngdong area formed from higher temperatures and more reducing fluids than did pyrite(-arsenopyrite)-rich mesothermal-type deposits in the Boseong-Jangheung area. Therefore, we prefer the third mechanism than others because the ${\delta}^34S values of the Precambrian gneisses and Paleozoic sedimentary rocks occurring in both areas were not known to the present. In future, in order to elucidate the provenance of ore sulfur more systematically, we need to determine ${\delta}^34S values of the Precambrian metamorphic rocks and Paleozoic sedimentary rocks consisting the basement of the Korean Peninsula including the Sobaegsan Massif.