• Title/Summary/Keyword: dynamics model

Search Result 5,073, Processing Time 0.027 seconds

Future Changes in Global Terrestrial Carbon Cycle under RCP Scenarios (RCP 시나리오에 따른 미래 전지구 육상탄소순환 변화 전망)

  • Lee, Cheol;Boo, Kyung-On;Hong, Jinkyu;Seong, Hyunmin;Heo, Tae-kyung;Seol, Kyung-Hee;Lee, Johan;Cho, ChunHo
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.303-315
    • /
    • 2014
  • Terrestrial ecosystem plays the important role as carbon sink in the global carbon cycle. Understanding of interactions of terrestrial carbon cycle with climate is important for better prediction of future climate change. In this paper, terrestrial carbon cycle is investigated by Hadley Centre Global Environmental Model, version 2, Carbon Cycle (HadGEM2-CC) that considers vegetation dynamics and an interactive carbon cycle with climate. The simulation for future projection is based on the three (8.5/4.5/2.6) representative concentration pathways (RCPs) from 2006 to 2100 and compared with historical land carbon uptake from 1979 to 2005. Projected changes in ecological features such as production, respiration, net ecosystem exchange and climate condition show similar pattern in three RCPs, while the response amplitude in each RCPs are different. For all RCP scenarios, temperature and precipitation increase with rising of the atmospheric $CO_2$. Such climate conditions are favorable for vegetation growth and extension, causing future increase of terrestrial carbon uptakes in all RCPs. At the end of 21st century, the global average of gross and net primary productions and respiration increase in all RCPs and terrestrial ecosystem remains as carbon sink. This enhancement of land $CO_2$ uptake is attributed by the vegetated area expansion, increasing LAI, and early onset of growing season. After mid-21st century, temperature rising leads to excessive increase of soil respiration than net primary production and thus the terrestrial carbon uptake begins to fall since that time. Regionally the NEE average value of East-Asia ($90^{\circ}E-140^{\circ}E$, $20^{\circ}N{\sim}60^{\circ}N$) area is bigger than that of the same latitude band. In the end-$21^{st}$ the NEE mean values in East-Asia area are $-2.09PgC\;yr^{-1}$, $-1.12PgC\;yr^{-1}$, $-0.47PgC\;yr^{-1}$ and zonal mean NEEs of the same latitude region are $-1.12PgC\;yr^{-1}$, $-0.55PgC\;yr^{-1}$, $-0.17PgC\;yr^{-1}$ for RCP 8.5, 4.5, 2.6.

A STUDY ON THE IONOSPHERE AND THERMOSPHERE INTERACTION BASED ON NCAR-TIEGCM: DEPENDENCE OF THE INTERPLANETARY MAGNETIC FIELD (IMF) ON THE MOMENTUM FORCING IN THE HIGH-LATITUDE LOWER THERMOSPHERE (NCAR-TIEGCM을 이용한 이온권과 열권의 상호작용 연구: 행성간 자기장(IMF)에 따른 고위도 하부 열권의 운동량 강제에 대한 연구)

  • Kwak, Young-Sil;Richmond, Arthur D.;Ahn, Byung-Ho;Won, Young-In
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.2
    • /
    • pp.147-174
    • /
    • 2005
  • To understand the physical processes that control the high-latitude lower thermospheric dynamics, we quantify the forces that are mainly responsible for maintaining the high-latitude lower thermospheric wind system with the aid of the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM). Momentum forcing is statistically analyzed in magnetic coordinates, and its behavior with respect to the magnitude and orientation of the interplanetary magnetic field (IMF) is further examined. By subtracting the values with zero IMF from those with non-zero IMF, we obtained the difference winds and forces in the high-latitude 1ower thermosphere(<180 km). They show a simple structure over the polar cap and auroral regions for positive($B_y$ > 0.8|$\overline{B}_z$ |) or negative($B_y$ < -0.8|$\overline{B}_z$|) IMF-$\overline{B}_y$ conditions, with maximum values appearing around -80$^{\circ}$ magnetic latitude. Difference winds and difference forces for negative and positive $\overline{B}_y$ have an opposite sign and similar strength each other. For positive($B_z$ > 0.3125|$\overline{B}_y$|) or negative($B_z$ < -0.3125|$\overline{B}_y$|) IMF-$\overline{B}_z$ conditions the difference winds and difference forces are noted to subauroral latitudes. Difference winds and difference forces for negative $\overline{B}_z$ have an opposite sign to positive $\overline{B}_z$ condition. Those for negative $\overline{B}_z$ are stronger than those for positive indicating that negative $\overline{B}_z$ has a stronger effect on the winds and momentum forces than does positive $\overline{B}_z$ At higher altitudes(>125 km) the primary forces that determine the variations of tile neutral winds are the pressure gradient, Coriolis and rotational Pedersen ion drag forces; however, at various locations and times significant contributions can be made by the horizontal advection force. On the other hand, at lower altitudes(108-125 km) the pressure gradient, Coriolis and non-rotational Hall ion drag forces determine the variations of the neutral winds. At lower altitudes(<108 km) it tends to generate a geostrophic motion with the balance between the pressure gradient and Coriolis forces. The northward component of IMF By-dependent average momentum forces act more significantly on the neutral motion except for the ion drag. At lower altitudes(108-425 km) for negative IMF-$\overline{B}_y$ condition the ion drag force tends to generate a warm clockwise circulation with downward vertical motion associated with the adiabatic compress heating in the polar cap region. For positive IMF-$\overline{B}_y$ condition it tends to generate a cold anticlockwise circulation with upward vertical motion associated with the adiabatic expansion cooling in the polar cap region. For negative IMF-$\overline{B}_z$ the ion drag force tends to generate a cold anticlockwise circulation with upward vertical motion in the dawn sector. For positive IMF-$\overline{B}_z$ it tends to generate a warm clockwise circulation with downward vertical motion in the dawn sector.

Usefulness of Pulsatile Flow Aortic Aneurysm Phantoms for Stent-graft Placement (스텐트그라프트 장치술을 위한 대동맥류 혈류 팬텀의 유용성)

  • Kim, Tae-Hyung;Ko, Gi-Young;Song, Ho-Young;Park, In-Kook;Shin, Ji-Hoon;Lim, Jin-Oh;Kim, Jin-Hyoung;Choi, Eu-Gene K.
    • Journal of radiological science and technology
    • /
    • v.30 no.3
    • /
    • pp.205-212
    • /
    • 2007
  • To evaluate the feasibility and efficacy of a pulsatile aortic aneurysm phantoms for in-vitro study. The phantoms consisted of a pulsating motor part(heart part) and an aortic aneurysm part, which mimicked true physiologic conditions. The heart part was created from a high-pressured water pump and a pulsatile flow solenoid valve for the simulation of aortic flow. The aortic aneurysm part was manufactured from paper clay, which was placed inside a acrylic plastic square box, where liquid silicone was poured. After the silicone was formed, the clay was removed, and a silicone tube was used to connect the heart and aneurysm part. We measured the change in pressure as related to the opening time(pulse rate, Kruskal-Wallis method) and pressure before and after the stent-graft implantation(n = 5, Wilcoxon's signed ranks test). The changes in blood pressures according to pulse rate were all statistically significant(p<0.05). The systolic/diastolic pressures at the proximal aorta, the aortic aneurysm, and the distal aorta of the model were $157.80{\pm}1.92/130.20{\pm}1.92$, $159.40{\pm}1.14/134.00{\pm}2.92$, and $147.20{\pm}1.480/129.60{\pm}2.70\;mmHg$, respectively, when the pulse rate was 0.5 beat/second. The pressures changed to $161.40{\pm}1.34/90.20{\pm}1.64$, $175.00{\pm}1.58/93.00{\pm}1.58$, and $176.80{\pm}1.48/90.80{\pm}1.92\;mmHg$, respectively, when the pulse rate was 1.0 beat/second, and $159.40{\pm}1.82/127.20{\pm}1.48$, $166.60{\pm}1.67/138.00{\pm}1.87$, and $161.00{\pm}1.22/135.40{\pm}1.67\;mmHg$, respectively, when it was 1.5 beat/second. When pulse rate was set at 1.0 beat/second, the pressures were $143.60{\pm}1.67/90.20{\pm}1.64$, $147.20{\pm}1.92/84.60{\pm}1.82$, and $137.40{\pm}1.52/88.80{\pm}1.64\;mmHg$ after stent-graft implantation. The changes of pressure before and after stent-graft implantation were statistically significant(p<0.05) except the diastolic pressures at the proximal(p =1.00) and distal aorta(p=0.157). The aortic aneurysm phantoms seems to be useful for the evaluation of the efficacy of stent-graft before animal or clinical studies because of its easy reproducibility and ability to display a wide range of pressures.

  • PDF