• Title/Summary/Keyword: dynamic-state-dependent model

Search Result 55, Processing Time 0.023 seconds

Minimizing Energy Consumption in Scheduling of Dependent Tasks using Genetic Algorithm in Computational Grid

  • Kaiwartya, Omprakash;Prakash, Shiv;Abdullah, Abdul Hanan;Hassan, Ahmed Nazar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2821-2839
    • /
    • 2015
  • Energy consumption by large computing systems has become an important research theme not only because the sources of energy are depleting fast but also due to the environmental concern. Computational grid is a huge distributed computing platform for the applications that require high end computing resources and consume enormous energy to facilitate execution of jobs. The organizations which are offering services for high end computation, are more cautious about energy consumption and taking utmost steps for saving energy. Therefore, this paper proposes a scheduling technique for Minimizing Energy consumption using Adapted Genetic Algorithm (MiE-AGA) for dependent tasks in Computational Grid (CG). In MiE-AGA, fitness function formulation for energy consumption has been mathematically formulated. An adapted genetic algorithm has been developed for minimizing energy consumption with appropriate modifications in each components of original genetic algorithm such as representation of chromosome, crossover, mutation and inversion operations. Pseudo code for MiE-AGA and its components has been developed with appropriate examples. MiE-AGA is simulated using Java based programs integrated with GridSim. Analysis of simulation results in terms of energy consumption, makespan and average utilization of resources clearly reveals that MiE-AGA effectively optimizes energy, makespan and average utilization of resources in CG. Comparative analysis of the optimization performance between MiE-AGA and the state-of-the-arts algorithms: EAMM, HEFT, Min-Min and Max-Min shows the effectiveness of the model.

Energy-based numerical evaluation for seismic performance of a high-rise steel building

  • Zhang, H.D.;Wang, Y.F.
    • Steel and Composite Structures
    • /
    • v.13 no.6
    • /
    • pp.501-519
    • /
    • 2012
  • As an alternative to current conventional force-based assessment methods, the energy-based seismic performance of a code-designed 20-storey high-rise steel building is evaluated in this paper. Using 3D nonlinear dynamic time-history method with consideration of additional material damping effect, the influences of different restoring force models and P-${\Delta}/{\delta}$ effects on energy components are investigated. By combining equivalent viscous damping and hysteretic damping ratios of the structure subjected to strong ground motions, a new damping model, which is amplitude-dependent, is discussed in detail. According to the analytical results, all energy components are affected to various extents by P-${\Delta}/{\delta}$ effects and a difference of less than 10% is observed; the energy values of the structure without consideration of P-${\Delta}/{\delta}$ effects are larger, while the restoring force models have a minor effect on seismic input energy with a difference of less than 5%, but they have a certain effect on both viscous damping energy and hysteretic energy with a difference of about 5~15%. The paper shows that the use of the hysteretic energy at its ultimate state as a seismic design parameter has more advantages than seismic input energy since it presents a more stable value. The total damping ratio of a structure consists of viscous damping ratio and hysteretic damping ratio and it is found that the equivalent viscous damping ratio is a constant for the structure, while the equivalent hysteretic damping ratio approximately increases linearly with structural response in elasto-plastic stage.

Models of Wastewater Treatment by Rotating Discs (회전원판접촉법(回轉圓板接觸法)에 의한 폐수처리(廢水處理)의 모형(模型)에 관한 연구(研究))

  • Chung, Tai Hak;Park, Chung Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.39-46
    • /
    • 1982
  • A model of substrate removal by rotating discs has been developed for a better understanding of the process, and the performance of the system has been evaluated under steady and unsteady state. The model was constructed based upon mass transfer of the substrate from the bulk solution to the biofilm and a simultaneous removal of the substrate by the biomass. The model is composed of a few sets of differential equations representing mass balance within the elements of a liquid film and a biofilm, and in the bulk solution. Substrate removal efficiency of the process is largely dependent on a diffusion coefficient of the substrate within the biofilm and a maximum rate of substrate removal of the biomass. The efficiency is affected to a greater extent when the substrate concentration is low and the maximum substrate removal rate is high. The efficiency increases proportionally with increasing film depth when the biofilm is shallow, however, the rate of increase gradually decreases with an increase of the film depth. As the film reaches a limiting depth, the efficiency remains constant. Unlike the steady state, the effluent quality is affected by the tank volume under dynamic state. Increasing tank volume decreases peak concentration of the effluent under peak loading. Additional tank volume provides a buffer capacitya.gainst a peak loading and the holding tank behaves like an equalization tank.

  • PDF

Development of Maneuvering Simulator for PERESTROIKA Catamaran using Fuzzy Inference Technique

  • Lee, Joon-Tark;Ji, Seok--Jun;Choi, Woo--Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.192-199
    • /
    • 2004
  • Navigation simulators have been used in many marine schools and manne training centers since the early 1960's. But these simulators were very expens~ve and were almost limited only in one engine system. In this paper, a catamaran with twin engine system. controlled by two remote control levers and its economic simulator based on a personal computer shall be introduced. One of the main features of catamaran is to control variously its progressing direction. In the static state, a catamaran can move into all the directions and in the dynamic state, ship can change immediately the heading and speed. Although a good navigator can skillfully operate one engine system, it is difficult to control smoothly the catamaran of twin engine system without any threat for the safety of passengers. Thus. in order to bring up the expert navigators. the development of a simulator which makes the training effective is necessary, Therefore, in this paper, a Fuzzy Inference Technique based Maneuvering Simulator for catamaran with twin engine system was developed. In general. in order to develop a catamaran simulator for effective training, first of all. its mathematical model must be acquired. According to the acquired system modeling. the dynamics of simulator is determined, But the proposed technique can omit a complex and tedious mathematical modeling procedures by using the fuzzy inference, which dependent upon only experiences of an expert and can design an efficient training program for unskillful navigators. This developed simulator was consisted of two fuzzy inference routines and two remote control levers, and was focused on effective training of navigators for the safe maneuvering to avoid a collision in a harbor.

Condition Evaluation of the Pavement Foundations Using Multi-load Level FWD Deflections (다단계 하중 FWD를 사용한 도로기초 상태평가 연구)

  • Park, Hee-Mun;Kim, Richard Y.;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.261-271
    • /
    • 2003
  • A condition evaluation procedure for the pavement foundations using multi-load level Falling Weight Deflectometer(FWD) deflections is presented in this paper. A dynamic finite element program incorporating a stress-dependent material model, was used to generate the synthetic deflection database. Based on this synthetic database, the relationships between surface deflections and critical responses, such as stresses and strains in base and subgrade layers, have been established. FWD deflection data, Dynamic Cone Penetrometer(UP) data, and repeated load resilient modulus testing results used in developing this procedure were collected from the Long Term Pavement Performance (LTPP) and North Carolina Department of Transportation (NCDOT) database. Research effort focused on investigation of the effect of the FWD load level on the condition evaluation procedures. The results indicate that the proposed procedure can estimate the pavement foundation conditions. It is also found that structurally adjusted Base Damage Index (BDI) and Base Curvature Index (BCI) are good indicators for the prediction of stiffness characteristics of aggregate base and subgrade respectively. A FWD test with a load of 66.7 kN or less does not improve the accuracy of this procedure. Results from the study for the nonlinear behavior of a pavement foundations indicate that the deflection ratio obtained from multi-load level deflections can predict the type and quality of the pavement foundation materials.