• 제목/요약/키워드: dynamic weight

Search Result 1,330, Processing Time 0.039 seconds

Ghost-free High Dynamic Range Imaging Based on Brightness Bitmap and Hue-angle Constancy (밝기 비트맵과 색도 일관성을 이용한 무 잔상 High Dynamic Range 영상 생성)

  • Yuan, Xi;Ha, Ho-Gun;Lee, Cheol-Hee;Ha, Yeong-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.111-120
    • /
    • 2015
  • HDR(High dynamic range) imaging is a technique to represent a dynamic range of real world. Exposure fusion is a method to obtain a pseudo-HDR image and it directly fuses multi-exposure images instead of generating the true-HDR image. However, it results ghost artifacts while fusing the multi-exposure images with moving objects. To solve this drawback, temporal consistency assessment is proposed to remove moving objects. Firstly, multi-level threshold bitmap and brightness bitmap are proposed. In addition, hue-angle constancy map between multi-exposure images is proposed for compensating a bitmap. Then, two bitmaps are combined as a temporal weight map. Spatial domain image quality assessment is used to generate a spatial weight map. Finally, two weight maps are applied at each multi-exposure image and combined to get the pseudo-HDR image. In experiments, the proposed method reduces ghost artifacts more than previous methods. The quantitative ghost-free evaluation of the proposed method is also less than others.

A Study on The Test Results of Dynamic Stress of Rubber Tired AGT (고무차륜형식 경량전철 차량 동응력 측정 결과 분석 및 결과 고찰)

  • Kwon, Tae;Kim, Young-Sik;Nam, Yang-Hee;Park, Hee-Chul
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2615-2625
    • /
    • 2011
  • Recently in worldwide and Korea domestically, the LRT vehicles are introduced as reputable urban transit system, in a view of energy saving, punctuality and eco-friendly as well as transport efficiency. At first time in Korea, the Busan metro Line 4 was applied with AGT system which is a kind of LRT using the Rubber tired AGT vehicle and developed from 1999 to 2004 in charge of Korean government. Busan selected the AGT system for Metro Line 4 as the solution of traffic jam and networking the intercity. At present, Busan Metro Line 4 has been running since opened at March 30, 2011. The vehicle of Busan metro line 4 is aiming the maximization of LRT vehicle advantage that is the lightness of vehicle size and vehicle weight. So, it did size downed and weight downed by lightened the weight of car frame and bogies and by the compactness of electrical on-board equipments. The study carried out the structure analysis to verify and safety and performance of car body and bogie frame of Busan Metro Line 4 vehicles. In this study, it was analyzed the stress of main load and verified the fatigue strength. And measured the dynamic stress sending to body structure and bogie frame while running on main line and analyzed the fatigue stress. As a result, it verified the safety and life cycle of car body and bogie frame.

  • PDF

Experimental Studies for Analysing of Characteristics of Floor Impact Sound through a Scale Model with Box-frame Type Structure (벽식구조 바닥판의 중량충격음 특성 분석을 위한 축소모형의 활용)

  • Yoo, Seung-Yup;Jeon, Jin-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.9
    • /
    • pp.805-812
    • /
    • 2011
  • This study investigated the characteristics of heavy-weight floor impact sounds of box-frame type structure using 1:10 scale model. Ten types of floor structures(bare slabs and floating floors) were evaluated in terms of dynamic stiffness and loss factor. Floor vibrations and radiated sounds generated by simulated impact source were also measured. The results showed that the bakelite was appropriate for simulating concrete slab in the 1:10 scale model, and surface velocity and sound pressure level of concrete slab measured from the scale model showed similar tendencies with the results from in-situ in frequency domain. It was also found that dynamic behaviors of layered floor structures in the 1:10 scale model were similar to those in a real scale. Therefore, the use of 1:10 scale model would be useful for evaluating the heavy-weight floor impact sound insulation of layered floor structures when the frequency-dependent dynamic properties of each material are known.

DRYING CHARACTERISTINCS OF THIN-LAYERS OF WHEAT AND BARLEY AT NEAR-AMBIENT TEMPERATURE

  • Sun, Da-Wen;J.J.Woods
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.896-905
    • /
    • 1993
  • Thin-layers of wheat and barley are dried at near-ambient temperatures(3.5$^{\circ}C$ -5$0^{\circ}C$) in order to obtain the intrinsic drying data. The well established apparatus was modified to enable it to record all the sample weight data in still air by using a purpose -built automatically controlled sliding valve. The air could be diverted in less than 0.5seconds and a 7 second period was required to attain a steady weight reading. With this apparatus, very smooth drying curves were obtained. The data of sample weight , drying temperature and dew point temperature wee recorded continuously . The drying process was terminated when the moisture content change in 24 hours was less than 0.004 d.b. This was achieved by drying a sample for about a week . The final points were recorded as the dynamic equilibrium moisture content(EMC). The drying data were than fitted to the exponential Newton model and the dynamic EMC data were fitted to the Modified-Chung-Pfost Model . All the fitted parameters are given and comparison is made with previous published data. The comparisons who that the current drying constants are lower than the previous data, the dynamic EMC data obtained for wheat and barely agree with the previous data. The results show that to obtain the drying constant in the exponential Newton model, adequate drying time is necessary.

  • PDF

Structural design optimization of racing motor boat based on nonlinear finite element analysis

  • Song, Ha-Cheol;Kim, Tae-Jun;Jang, Chang-Doo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.217-222
    • /
    • 2010
  • Since 1980's, optimum design techniques for ship structural design have been developed to the preliminary design which aims at minimum weight or minimum cost design of mid-ship section based on analytic structural analysis. But the optimum structural design researches about the application for the detail design of local structure based on FEA have been still insufficient. This paper presents optimization technique for the detail design of a racing motor boat. To improve the performance and reduce the damage of a real existing racing boat, direct structural analyses; static and non-linear transient dynamic analyses, were carried out to check the constraints of minimum weight design. As a result, it is shown that the optimum structural design of a racing boat has to be focused on reducing impulse response from pitching motion than static response because the dynamic effect is more dominant. Optimum design algorithm based on nonlinear finite element analysis for a racing motor boat was developed and coded to ANSYS, and its applicability for actual structural design was verifed.

An Analysis of Characteristics of Floor Dynamic Properties and Bang-machine Impact Force on Floating Floor Using System Analysis (시스템 해석을 이용한 뜬바닥구조에서의 바닥구조 동특성과 뱅머신의 충격력 특성 분석)

  • Mun, Dae-Ho;Park, Hong-Gun;Hwang, Jae-Seung;Hong, Geon-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.390-398
    • /
    • 2014
  • Heavy-weight floor impact noise is directly related to the impact source and floor vibration property. Dynamic properties of the standard floating floor that is used in Korea was investigated using accelerance, acceleration energy spectral density(ESD), and structural modal test. In the standard floating floor, natural frequency was decreased by the finishing mortar mass and the damping ratio was increased. Bang-machine force spectrum acting on the concrete slab can be calculated using inverse system analysis. Impact force acting on concrete slab is changed by interaction of finishing mortar and resilient material. The amplitude of the bang-machine force spectrum was amplified in low frequency range(below 100 Hz), and over 100 Hz was decreased. Changed force spectrum influence to the response of structure vibration, so the heavy-weight floor impact noise level was changed.

Effect of Weight of Fire-protective Clothing for Physical Balance and Agility after Maximum Physical Activity (소방방화복 무게가 최대 신체활동 후 평형성과 민첩성에 미치는 영향)

  • Bang, Chang-Hoon;Huh, Man-Dong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.45-49
    • /
    • 2011
  • The aim of study intends to investigate effect of weight of fire-protective clothing for physical balance and agility after maximum physical activity and to provide the base data for the safety of firefighter. For evaluation of static and dynamic-balance, the closed-eyes foot balance and the beam-walking were performed respectively. For evaluation of static and dynamic-agility, the whole body reaction and the side-step were carried out. This study demonstrates that after maximum physical activity, the weight of fire-protective clothing effects on physical static-balance and dynamic-agility and suggests that it could be useful for actual safety field studies of firefighters.

Static and dynamic analysis of guyed steel lattice towers

  • Meshmesha, Hussam M.;Kennedy, John B.;Sennah, Khaled;Moradi, Saber
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.567-577
    • /
    • 2019
  • Guyed steel lattice towers (or guyed masts) are widely used for supporting antennas for telecommunications and broadcasting. This paper presents a numerical study on the static and dynamic response of guyed towers. Three-dimensional nonlinear finite-element models are used to simulate the response. Through performing static pushover analyses and free-vibration (modal) analyses, the effect of different bracing configurations is investigated. In addition, seismic analyses are performed on towers of different heights to study the influence of earthquake excitation time-lag (or the earthquake travel distance between tower anchors) and antenna weight on the seismic response of guyed towers. The results show that the inclusion of time lag in the seismic analysis of guyed towers can influence shear and moment distribution along the height of the mast. Moreover, it is found that the lateral response is insensitive to bracing configurations. The results also show that, depending on the mast height, an increased antenna weight can reduce the tower maximum base shear while other response quantities, such as cables tension force are found to be insensitive to variation in the antenna weight.

The Dynamic Characteristic Test of Oil pump Integrated Balance Shaft Module (오일펌프 내장형 밸런스 샤프트 모듈의 동특성 시험)

  • Seong, Eun-Je;Kang, Dae-Gyu;Jeong, Chan-Yong;Han, Chang-Soo;Kim, Myung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.403-408
    • /
    • 2007
  • According as diesel automobile are produced, reduce noise and vibration that is occurred by characteristic of diesel engine, and need engine room layout optimization and research for light weight of parts. Balance Shaft Module is module parts for vehicles engine to improve performance and efficiency of engine and reduce noise and vibration. These days, an oil pump integrated balance shaft module and an oil sump integrated balance shaft module is on the rising for optimizing of engine room. In this study, produced prototype of oil pump integrated type balance shaft module, and achieved dynamic characteristic test about experimental modal analysis and noise/vibration of balance shaft module.

  • PDF

Nugget Formation and Dynamic Resistance in Resistance Spot Welding of Aluminum to Steel

  • Chang H. S.
    • International Journal of Korean Welding Society
    • /
    • v.5 no.1
    • /
    • pp.53-59
    • /
    • 2005
  • Auto industry has employed resistance spot welding(RSW) to join steel sheets for structural rigidity of automobile body. Driven by the need to reduce weight and fuel consumption, car companies have been evaluating aluminum intensive vehicles(AIVs) as a way to reduce vehicle weight without downsizing. During the transition from all steel-construction vehicle body to aluminum intensive body, joining aluminum to steel sheets emerges as a serious contender in automobile body. This paper deals with application of transition material to RSW aluminum to steel. Placing transition material insert between the aluminum/steel interface was found very effective to overcome physical incompatibility between aluminum and steel. Use of transition insert allows for two separate weld nuggets to be formed in their respective aluminum/aluminum and steel/steel interfaces. This RSW processes was monitored with the aid of dynamic resistance sampling. Typical patterns in sampled dynamic resistance curves indicated formation of sound nugget. The growth of two separate nuggets was examined by micro-cross section test.

  • PDF