• Title/Summary/Keyword: dynamic water balance model

Search Result 22, Processing Time 0.026 seconds

Development of Monthly Hydrological Cycle Assessment System Using Dynamic Water Balance Model Based on Budyko Framework (Budyko 프레임워크 기반 동적 물수지 모형을 활용한 월 단위 물순환 평가체계 개발)

  • Kim, Kyeung;Hwang, Soonho;Jun, Sang-Min;Lee, Hyunji;Kim, Sinae;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.2
    • /
    • pp.71-83
    • /
    • 2022
  • In this study, an indicator and assessment system for evaluating the monthly hydrological cycle was prepared using simple factors such as the landuse status of the watershed and topographic characteristics to the dynamic water balance model (DWBM) based on the Budyko framework. The parameters a1 of DWBM are introduced as hydrologic cycle indicators. An indicator estimation regression model was developed using watershed characteristics data for the introduced indicator, and an assessment system was prepared through K-means cluster analysis. The hydrological cycle assessment system developed in this study can assess the hydrological cycle with simple data such as land use, CN, and watershed slope, so it can quickly assess changes in hydrological cycle factors in the past and present. Because of this advantage is expected that the developed assessment system can predict changes in the hydrological cycle and use an auxiliary tool for policymaking.

Research on One Dimensional Dynamic Model in Water Transportation of PEM Fuel Cell

  • Bakhtiar, Agung;You, Jin-Kwang;Park, Jong-Bum;Hong, Boo-Pyo;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.382-387
    • /
    • 2012
  • Water balance has a significant impact on the overall fuel cell system performance. Proper water management should provide an adequate membrane hydration and avoidance of water flooding in the catalyst layer and gas diffusion layer. Considering the important of advanced water management in PEM fuel cell, this study proposes a simple one dimensional water transportation model of PEM fuel cell for use in a dynamic condition. The model has been created by assumption that the output is the water liquid saturation difference. The liquid saturation change is the total difference between the additional water and the removal water on the system. The water addition is obtained from fuel cell reaction and the electro osmotic drag. The water removal is obtained from capillary transport and evaporation process. The result shows that the capillary water transport of low temperature fuel cell is high because the evaporation rate is low.

  • PDF

Dynamic Model of a Passive Air-Breathing Direct Methanol Fuel Cell (수동급기 직접 메탄올 연료전지의 동적 모델)

  • Ha, Seung-Bum;Chang, Ikw-Hang;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.33-36
    • /
    • 2008
  • The transient behavior of a passive air breathing direct methanol fuel cell (DMFC) operated on vapor-feeding mode is studied in this paper. It generally takes 30 minutes after starting for the cell response to come to its steady-state and the response is sometimes unstable. A mathematical dynamic one-dimensional model for simulating transient response of the DMFC is presented. In this model a DMFC is decomposed into its subsystems using lumped model and divided into five layers, namely the anodic diffusion layer, the anodic catalyst layer, the proton exchange membrane (PEM), the cathodic catalyst layer and the cathodic diffusion layer. All layers are considered to have finite thickness, and within every one of them a set of differential-algebraic governing equations are given to represent multi-components mass balance, such as methanol, water, oxygen and carbon dioxide, charge balance, the electrochemical reaction and mass transport phenomena. A one-dimensional, isothermal and mass transport model is developed that captures the coupling between water generation and transport, oxygen consumption and natural convection. The single cell is supplied by pure methanol vapor from a methanol reservoir at the anode, and the oxygen is supplied via natural air-breathing at the cathode. The water is not supplied from external source because the cell uses the water created at the cathode using water back diffusion through nafion membrane. As a result of simulation strong effects of water transport were found out. The model analysis provides several conclusions. The performance drop after peak point is caused by insufficiency of water at the anode. The excess water at the cathode makes performance recovery impossible. The undesired crossover of the reactant methanol through the PEM causes overpotential at the cathode and limits the feeding methanol concentration.

  • PDF

Probabilistic Solution to Stochastic Soil Water Balance Equation using Cumulant Expansion Theory (Cumulant 급수이론을 이용한 추계학적 토양 물수지 방정식의 확률 해)

  • Han, Suhee;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.112-119
    • /
    • 2009
  • Based on the study of soil water dynamics, this study is to suggest an advanced stochastic soil water model for future study for drought application. One distinguishable remark of this study is the derivation of soil water dynamic controling equation for 3-stage loss functions in order to understand the temporal behaviour of soil water with reaction to the precipitation. In terms of modeling, a model with rather simpler structure can be applied to regenerate the key characteristics of soil water behavior, and especially the probabilistic solution of the derived soil water dynamic equation can be helpful to provide better and clearer understanding of soil water behavior. Moreover, this study will be the future cornerstone of applying to more realistic phenomenon such as drought management.

A Dynamic Model of PEMFC for Residential Power Generator (가정용 연료전지 시스템 동특성 해석 모델)

  • Yu, Sang-Seok;Kim, Han-Seok;Lee, Sang-Min;Lee, Young-Duk;Ahn, Kook-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.12-16
    • /
    • 2007
  • A dynamic model of proton exchange membrane fuel cell(PEMFC) system is designed to understand the performance of the PEMFC in residential power generator(RPG) over various balance of plant(BOP) options. In particular, since the performance of PEMFC system should be optimized for given operating ranges, it is necessary to design suitable BDP components which can support the operating ranges. The objective of this study is to develop a dynamic system model for the study of PEMFC performance over various BOP options. Therefore, a dynamic model is composed of a PEMFC stack model, a water management system model, a thermal management system model and a fuel/air supply model and the model is integrated under SIMULINK(R)environment. Basic simulation results will be presented.

  • PDF

Analysis of Nutrient Dynamics and Development of Model for Estimating Nutrient Loading from Paddy Field

  • Jeon, Ji-Hong;Yoon, Chun-G.;Hwang, Ha-Sun;Jung, Kwang-Wook
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.7
    • /
    • pp.57-69
    • /
    • 2003
  • To evaluate nutrient dynamics with different fertilization in paddy field and develop water quality model, mass balance analysis was performed during growing season of 2001-2002 in field experimental plots irrigated with groundwater. As a result of water balance analysis, most of outflow was surface drainage as about half of total outflow and about 500mm was lost by evapotranspiration. The water budget was well balanced. The runoff from paddy field was influenced by rainfall and forced drain. Especially runoff during early cultural periods more depends on the forced drain. As a result of mass balance analysis, most of nutrient was input by fertilization and lost by plant uptake. Significant amount of nitrogen were supplied by precipitation and input from upper paddy field, comprising 12%∼28% of total inflow. Nutrient loading by surface drainage was occurred showing about 15%∼29% for T-N and 6%∼13% for T-P. The response of rice yield with different fertilization was not significant in this study. Water quality model for paddy field developed using Dirac delta function and continuous source was calibrated and validated to surface water quality monitoring data. It demonstrates good agreement between observed and simulated. The nutrient concentration of surface water at paddy field was significantly influenced by fertilization. During early cultural periods when significant amount of fertilizer was applied, surface drainage from paddy field can cause serious water quality problem. Therefore, reducing surface drainage during fertilization period can reduce nutrient loading from paddy fields. Shallow irrigation, raising the weir height in diked rice fields, and minimizing forced surface drainage are suggested to reduce surface drainage outflow.

Evaluation on Applicability of the Real-time Prediction Model for Influent Characteristics in Full-scale Sewerage Treatment Plant (하수처리장 유입수 성상 실시간 예측모델 및 활용성 평가)

  • Kim, Youn-Kwon;Kim, Ji-Yeon;Han, In-Sun;Kim, Ju-Hwan;Chae, Soo-Kwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1706-1709
    • /
    • 2010
  • Sewerage Treatment Plants(STPs) are complexes systems in which a range of physical, chemical and biological processes occur. Since Activated Sludge Model(ASM) No.1 was published, a number of new mathematical models for simulating biological processes have been developed. However, these models have disadvantages in cost and simplicity due to the laboriousness and tediousness of their procedures. One of the major difficulties of these mathematical model based tools is that the field-operators mostly don't have the time or the computer-science skills to handle there models, so it mainly remains on experts or special engineers. In order to solve these situations and help the field-operators, the $KM^2BM$(K-water & More-M Mass Balance Model) based on the dynamic-mass balance model was developed. This paper presents $KM^2BM$ as a simulation tools for STPs design and optimization. This model considers the most important microbial behavioral processes taking place in a STPs to maximize potential applicability without increasing neither model parameter estimation nor wastewater characterization efforts.

  • PDF

Analysis of the Wet-end Dynamics in Paper Mills

  • Ryu, Jae-Yong;Yeo, Yeong-Koo;Yi, Sung-Chul;Seo, Dong-Jun;Hong Kang
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.5
    • /
    • pp.26-36
    • /
    • 2003
  • The wet-end dynamics of a paper mill was analyzed to characterize its dynamic behavior during the grade change of paper. The model representing the wet-end section is developed based on the mass balance relationships written for the simplified wet-end white water network. From the linearization of dynamic model, higher-order Laplace transfer functions were obtained followed by the reduction procedure to give simple lower-order models in the form of 1$^{st}$-order or 2$^{nd}$ -order plus dead times. The dynamic response of the wet-end is influenced both by the white water volume and by the level of wire retention. Effects of key manipulated variables such as the thick stock flow rate, the ash flow rate and the retention aid flow rate on the major controlled variables were analyzed by numerical simulations. The simple dynamic model developed in the present study can be effectively used in the operation and control of paper mills.s.

A Water-Wall Model of Supercritical Once-Through Boilers Using Lumped Parameter Method

  • Go, Geon;Moon, Un-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1900-1908
    • /
    • 2014
  • This paper establishes a compact and practical model for a water-wall system comprising supercritical once-through boilers, which can be used for automatic control or simple analysis of the entire boiler-turbine system. Input and output variables of the water-wall system are defined, and balance equations are applied using a lumped parameter method. For practical purposes, the dynamic equations are developed with respect to pressure and temperature instead of density and internal energy. A comparison with results obtained using APESS, a practical thermal power plant simulator developed by Doosan Heavy Industries and Construction, is presented with respect to steady state and transient responses.

Analysis of Dynamic Characteristics of 20 kW Hydrogen Fuel Cell System Based on AMESet (AMESet 기반 20 kW급 수소 연료전지 시스템 동특성 모델 해석)

  • JONGBIN WOO;YOUNGHYEON KIM;SANGSEOK YU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.465-477
    • /
    • 2023
  • In proton exchange membrane fuel cell (PEMFC), proper thermal management of the stack and moisture generation by electrochemical reactions significantly affect fuel cell performance. In this study, the PEMFC dynamic characteristic model was developed through Simcenter AMESim, a development program. In addition, the developed model aims to understand the thermal resin balance of the stack and performance characteristics for input loads. The developed model applies the thermal management model of the stack and the moisture content and permeability model to simulate voltage loss and stack thermal behavior precisely. This study extended the C based AMESet (adaptive modeling environment submodeling tool) to simulate electrochemical reactions inside the stack. Fuel cell model of AMESet was liberalized with AMESim and then integrated with the balance of plant (BOP) model and analyzed. And It is intended to be used in component design through BOP analysis. The resistance loss of the stack and thermal behavior characteristics were predicted, and the impact of stack performance and efficiency was evaluated.