• Title/Summary/Keyword: dynamic visual

Search Result 635, Processing Time 0.028 seconds

HDR image display combines weighted least square filtering with color appearance model

  • Piao, Meixian;Lee, Kyungjun;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.260-263
    • /
    • 2016
  • Recently high dynamic range imaging technique is hot issue in computer graphic area. We present a progressive tone mapping algorithm, which is based on weighted least squares optimization framework. Our approach combines weighted leastsquaresfiltering with iCAM06, for showing more perceptual high dynamic range images in conventional display, while avoiding visual halo artifacts. We decompose high dynamic range image into base layer and detail layer. The base layer has large scale variation, it is obtained by using weighted least squares filtering, and then the base layer incorporates iCAM06 model. Then, adaptive compression on the base layer according to human visual system. Only the base layer reduces contrast, and preserving detail. The resultshows more perceptual color appearance and preserve fine detail, while avoiding common artifacts.

  • PDF

A Study on the Dynamic Bending Properties of Textile Fabrics

  • Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.15 no.3
    • /
    • pp.84-96
    • /
    • 2011
  • With the advancements in the computer graphics sectors, the visual quality of the virtual clothing implemented by using the 3-dimensional digital clothing software system has been much improved during the past decade. Most of the cloth simulation procedures are complicated due to the multitude of parameters involved in the simulation in order to achieve the appearance of the actual textile fabrics or the movement of the actual clothing as close as possible. Bending properties affect the tactile and visual qualities of the textile fabrics along with the shear and tensile properties. In this study, dynamic bending properties, focused on the movement of the textile fabrics including damping ratio and amplitude, were measured by using a dynamic bending test system.

Visual simulator for supporting to learn efficiently on dynamic programming (동적 프로그래밍에 대한 효율적인 학습을 지원하는 시각화 시뮬레이터)

  • Jung, Soon-Young;Kwon, Han-Sook
    • The Journal of Korean Association of Computer Education
    • /
    • v.11 no.4
    • /
    • pp.23-36
    • /
    • 2008
  • It's known by recent surveys that many students have difficulty in understanding the concepts of programming algorithms, and don't feel interested in learning them. Dynamic programming, one of the most important and widely-used algorithms in computer science, is especially feared by students and unlike other algorithms, it also requires understanding of the process of problem solving and storage space design as well as basic principles of the algorithm. And so it has not been properly covered in classes. In this paper, we developed a visual simulator to solve the above problems in learning dynamic programming. This learning simulator is designed for students to run the algorithms themselves and learn how it works by visualizing each step of dynamic programming and corresponding states of storage space.

  • PDF

Influence of Visual Feedback Training on the Balance and Walking in Stroke Patients

  • Lee, Kwan-Sub;Choe, Han-Seong;Lee, Jae-Hong
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.6
    • /
    • pp.407-412
    • /
    • 2015
  • Purpose: This study aimed to evaluate changes in the balance ability of patients whose head positions were altered due to stroke. Subjects were divided into three groups to determine the effects of the training on dynamic balance and gait. Methods: Forty-two stroke patients were enrolled. The Visual Feedback Training (VFT) group performed four sets of exercises per training session using a Sensoneck device, while the Active Range of Motion (ART) group performed eight sets per training session after receiving education from an experienced therapist. The Visual Feedback with Active Range of Motion (VAT) group performed four sets of active range of motion and two sets of visual-feedback training per session using a Sensoneck device. The training sessions were conducted three days a week for eight weeks. Results: The comparison of changes in dynamic balance ability showed that a significant difference in the total distance of the body center was found in the VFT group (p<0.05) and Significant differences were found according to the training period (p<0.05). The comparison of the 10 m walk test showed that the main effect test, treatment period and interactions between group had statistically significant differences between the three groups (p<0.05). Conclusion: Head-adjustment training using visual feedback can improve the balance ability and gait of stroke patients. These results show that coordination training between the eyes and head with visual feedback exercises can be used as a treatment approach to affect postural control through various activities involving the central nervous system.

A Study on the Measurement of Dynamic Visual Acuity according to the Change of Accommodative Stimulus (조절자극 변화에 따른 동체시력(Dynamic visual acuity) 측정에 관한 연구)

  • Jin, Moon-Seog;Jeon, In-Chul
    • The Korean Journal of Vision Science
    • /
    • v.20 no.4
    • /
    • pp.523-530
    • /
    • 2018
  • Purpose : The purpose of this study was to investigate the difference in the dynamic visual acuity between (DVA) the distance and near and the effect of change of accommodative stimulus on the dynamic visual acuity by the addition of the plus lens. Methods : The study involved 40 male and female adults ($22.84{\pm}2.43$ years old) with over 1.0 of visual acuity and without systemic disease or ocular disease. We compared the distance and near DVA and the change of DVA induced by the addition of the plus lens(+0.50D, +1.00D, +1.50D). Results : The distance DVA and near DVA are $78.86{\pm}19.46deg/sec$ and $76.90{\pm}18.05deg/sec$ respectively. The distance DVA was slightly higher(p=0.04). The higher the distance DVA, the higher the positive correlation with the near DVA and distance DVA, and distance DVA was higher in those who had higher the near DVA(r=0.95, p=0.00, Fig. 4). The near DVA according to the change of accommodative stimulus was $75.95{\pm}18.85deg/sec$ in full correction and the near DVA with +0.50D spherical power was $76.95{\pm}16.45$ but there was no statistically significant differences(p>0.05). However, the near DVA with +1.00D spherical power was $79.02{\pm}13.51deg/sec$ and it was slightly higher. Also, the near DVA with +1.50D spherical power was $84.28{\pm}18.96deg/sec$, there and it was statistically significant difference(p<0.05). Conclusion : There is no difference between distance and near DVA, but near DVA is also excellent if distance DVA is good. The DVA increases as added a plus lens for controlled accommodative stimulation changes.

Optical Design of an Inspection Apparatus for Dynamic Visual Acuity (동체시력 검사기의 광학계 설계)

  • Lee, Dong-Hee;Kim, Hye-Dong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.9 no.2
    • /
    • pp.473-480
    • /
    • 2004
  • Recently, they are interested in the relation between night's vehicle accidents of drivers and the dynamic visual acuity at home and aboard. So, in this research, we tried to design an optical system of the inspection equipment to measure the dynamic visual acuity. A optotype standard did to Landolt's ring with 45mm of diameter and 9mm of gap to maintain the visual acuity of 1.0 in the 30m distance. An optical structure of the inspection equipment was composed of the sequence of an observer, a plus refraction lens system, a minus refraction lens system, and an optotype that was arranged to have characteristics that the size of the first virtual image of the optotype made by the minus refraction lens system grows bigger gradually according to the optotype movement to near distance from far distance, and also the first virtual image moves to the principle plane from the focal point of the plus refraction lens system as the size of the first virtual image arranged to the inside of focal distance of plus refraction lens system grows bigger gradually. As doing these processes, we completed the optical system of which characteristic is that the position of the final second virtual image moves to 3m from 50m as the size of the second virtual image made by the plus refraction lens system maintains to be regular.

  • PDF

A Study on the Improved Dynamic Object-Oriented Program Slicing (개선된 동적 객체지향 프로그램 슬라이싱에 관한 연구)

  • Park Soon-Hyung;Park Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.10
    • /
    • pp.1485-1495
    • /
    • 2004
  • We propose the representation of a improved dynamic object-oriented program dependence graph so as to process the slicing of object-oriented programs that is composed of related programs in order to process certain jobs. We also propose an efficient slicing algorithm using the relations of relative tables in order to compute dynamic slices of object-oriented programs. We programmed the algorithm by using fortran and Visual C++. The procedure that computes the dynamic object-oriented program slices using the improved dynamic object-oriented program dependence graph(IDOPDC) is divided into four steps. Consequently, the efficiency of the proposed improved dynamic object-oriented program dependence graph(IDOPDG) technique is also compared with the dependence graph techniques discussed previously. As a result, this certifies that an improved dynamic object-oriented program dependence graph is more efficient in comparison with the traditional dynamic object-oriented program dependence graph(DOPDG).

  • PDF

Developing Visual Complexity Metrics for Automotive Human-Machine Interfaces

  • Kim, Ji Man;Hwangbo, Hwan;Ji, Yong Gu
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.235-245
    • /
    • 2015
  • Objective: The purpose of this study is to develop visual complexity metrics based on theoretical bases. Background: With the development of IT technologies, drivers process a large amount of information caused by automotive human-machine interface (HMI), such as a cluster, a head-up display, and a center-fascia. In other words, these systems are becoming more complex and dynamic than traditional driving systems. Especially, these changes can lead to the increase of visual demands. Thus, a concept and tool is required to evaluate the complicated systems. Method: We reviewed prior studies in order to analyze the visual complexity. Based on complexity studies and human perceptual characteristics, the dimensions characterizing the visual complexity were determined and defined. Results: Based on a framework and complexity dimensions, a set of metrics for quantifying the visual complexity was developed. Conclusion: We suggest metrics in terms of perceived visual complexity that can evaluate the in-vehicle displays. Application: This study can provide the theoretical bases in order to evaluate complicated systems. In addition, it can quantitatively measure the visual complexity of In-vehicle information system and be helpful to design in terms of preventing risks, such as human error and distraction.

Landing with Visual Control Reveals Limb Control for Intrinsic Stability

  • Lee, Aeri;Hyun, Seunghyun;Ryew, Checheong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.226-232
    • /
    • 2020
  • Repetition of landing with visual control in sports and training is common, yet it remains unknown how landing with visual control affects postural stability and lower limb kinetics. The purpose of this study was to test the hypothesis that landing with visual control will influence on lower limb control for intrinsic dynamic postural stability. Kinematics and kinetics variables were recorded automatically when all participants (n=10, mean age: 22.00±1.63 years, mean heights: 177.27±5.45 cm, mean mass: 73.36±2.80 kg) performed drop landings from 30 cm platform. Visual control showed higher medial-lateral force, peak vertical force, loading rate than visual information condition. This was resulted from more stiff leg and less time to peak vertical force in visual control condition. Leg stiffness may decrease due to increase of perturbation of vertical center of gravity, but landing strategy that decreases impulse force was shifted in visual control condition during drop landing. These mechanism explains why rate of injury increase.