• Title/Summary/Keyword: dynamic tuning

Search Result 290, Processing Time 0.029 seconds

Design of a Dynamic Absorber Using Permanent Magnet Force (영구자석의 자력을 이용한 동흡진기의 설계)

  • Son, Sol-San;Kim, Won-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1064-1070
    • /
    • 2010
  • In this work, a dynamic absorber with a plate-type cantilever using magnetic force is proposed to reduce the vibration of a compressor directly. The dynamic absorber using magnetic force has some advantages of easily tuning the control frequency by adjusting the magnet spacing and obtaining wider control frequency band. The dynamic absorber is designed theoretically and tested experimentally to estimate the control frequency band. When the compressor is equipped with the dynamic absorber, the vibration of compressor and the noise level of refrigerator are reduced by 30 % and 3.2 dB respectively.

Design of auto-tuning controller for Dynamic Systems using neural networks (신경회로망을 이용한 동적 시스템의 자기동조 제어기 설계)

  • Cho, Hyun-Seob;Oh, Myoung-Kwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.05a
    • /
    • pp.147-149
    • /
    • 2007
  • "Dynamic Neural Unit"(DNU) based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our methodis different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its trainin.

  • PDF

A study on the imaprovement of welding performance of the inverter spot welders (인버터 스폿 용접의 용접성능 향상을 위한 연구)

  • 서문준;김규식;김재문;원충연
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.7
    • /
    • pp.103-108
    • /
    • 1998
  • In this paper, we atempt to control the nonlinear power system for resistance spot welders to be a fully linearizesd system by applying the recently developed nonlinear feedback linearization techniques. the controller proposed in this paper is computationally simple. In addition, the easy gain tuning as well as the high dynamic performance of resistance spot welding systems can be obained simulaneously. To illustrate the dynamic performance of our controller further, we present some simulation results.

  • PDF

Neural Network Algorithm Application to Auto-tuning of Dynamic Systems (동적시스템의 자동동조를 위한 신경망 알고리즘 응용)

  • Cho, Hyun-Seob
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.11a
    • /
    • pp.186-190
    • /
    • 2006
  • "Dynamic Neural Unit"(DNU) based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our methodis different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its trainin.

  • PDF

A Study on Algorithm of Checking Errors in Assembly Process of Feed Drive system in NC Machine Tools (NC공작기계 이송기구의 조립시 발생하는 결함의 발견)

  • Park, Jong-Bong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.2
    • /
    • pp.141-147
    • /
    • 2001
  • This paper presents a developing algorithm of checking errors of feed mechanism in the NC machine tool with DAC method. It is useful to check static and dynamic rigidity with relation between lost motion and current of rotor. For checking error of feed in assembly tuning with machining center proposed checking algorithm is useful.

  • PDF

Dynamic Neurocontrol Architecture of Robot Manipulators (로보트 매니퓰레이터의 동력학적 신경제어 구조)

  • 문영주;오세영
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.8
    • /
    • pp.15-23
    • /
    • 1992
  • Neural network control has many innovative potentials for fast, accurate and intelligent adaptive control. In this paper, two kinds of neurocontrol architectures for the dynamic control of robot manipulators are developed. One is based on a System Identification and Control scheme and the other is based on the Feedback-Error leaming scheme. Both of the proposed architectures use an inverse dynamic neurocontroller in parallel with a linear neurocontroller. The difference is that the first architecture uses the system identifier to get the signals used for training neurocontrollers, while the second architecture uses a properly defined energy function. Compared with the previous types of neurocontrollers which are using an inverse dynamic neurocontroller and a fixed PD gain controller, the proposed architectures not only eliminate the painful process of the fixed gain tuning but also exhibit superior peformances because the linear neurocontroller can adapt its gains according to the applied task. This superior performance is tested and verified through computer simulation of the dynamic control of the PUMA 560 arm.

  • PDF

Dynamic Vibration Absorber Having Coil Springs and Oil Damper for a Damped Vibration System (감쇠진동계에 부착된 코일스프링과 오일댐퍼로 구성된 동흡진기)

  • Ahn, C.W.;Park, S.C.;Lee, H.B.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.129-135
    • /
    • 1996
  • This paper presents the effectiveness of the dynamic vibration absorber consisting of a single mass, coil springs and oil damper on the resonance freauency ratio and amplitude ratio for damped linear systems, that is, primary vibration system with damping. The effects of the dynamic vibration absorber are investigated numerically and experimentally for values of mass ratio, natural frequency ratio, and damping ratio. The experimental results show good agreement with calculated ones. As a result, the characteristics shown by the present work are useful in optimal tuning the dynamic vibration absorber in practice.

  • PDF

Adaptively tuned dynamic absorber

  • Kim, Tae-Hyun;Park, Young-Jin;Kim, Heung-Gi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.111.4-111
    • /
    • 2001
  • In this paper, an adaptively tuned dynamic absorber is proposed. The adaptively tuned dynamic absorber is a dynamic absorber whose stiffness is tuned so that the natural frequency of the absorber coincides with the operating or natural frequency estimated by an adaptive algorithm. The feature of this absorber is as follows. It has an electrodynamic device for the stiffness control. Using Lorenz´s force, it changes the stiffness by changing the applied current. The change of stiffness results in the natural frequency shift, because its mass and damping coefficient are fixed. We may reduce the vibration of the overall system by tuning the natural frequency of the dynamic absorber to the resonant frequency of the structure, when the dominant single tone oscilation occurs in the system ...

  • PDF

Dynamic Analysis and Evaluation of a Microgyroscope using Symmetric 2DOF Planar Resonator (대칭형 2자유도 수평 공진기를 이용한 마이크로 자이로스코프의 동특성 해석 및 평가)

  • Hong, Yoon-Shik;Lee, Jong-Hyun;Kim, Soo-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Conventional microgyroscopes of vibrating type require resonant frequency tuning of the driving and sensing modes to achieve high sensitivity. These tuning conditions depend on each fabricated microgyroscopes, even though the microgyroscopes are identically designed. A new micromachined resonator, which is applicable to microgyroscopes with self-toning characteristics, is presented. Since the laterally driven two degrees of freedom (2DOF) resonator was designed as a symmetric structure with identical stiffness in two orthogonal axes, the resonator is applicable to vibrating microgyroscopes, which do not need mode tuning. A dynamic model of the resonator was derived considering gyroscopic application. The dynamic model was evaluated by experimental comparison with fabricated resonators. The microgyroscopes were fabricated using a simple 2-mask-process of a single polysilicon layer deposited on an insulator layer. The feasibility of the resonator as a vibrating microgyroscopes with self-tuning capability is discussed. The fabricated resonators of a particular design have process-induced non-uniformities that cause different resonant frequencies. For several resonators, the standard deviations of the driving and sensing frequencies were as high as 1232Hz and 1214Hz, whereas the experimental average detuning frequency was 91.75Hz. The minimum detuned frequency was 68Hz with $0.034mVsec/^{\circ}$ sensitivity. The sensitivity of the microgyroscopes was low due to process-induced non-uniformity; the angular rate bandwidth, however, was wide. This resonator could be successfully applicable to a vibrating microgyroscopes with high sensitivity, if improvements in uniformity of the fabrication process are achieved. Further developments in improved integrated circuits are expected to lower the noise level even more.

  • PDF

A Dynamic Bandwidth Tuning Mechanism for DQDB in Client-Server Traffic Environments (클라이언트-서버 트래픽 환경에서 분산-큐 이중-버스의 동적 대역폭 조절 방식)

  • Kim, Jeong-Hong;Kwon, Oh-Seok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.11
    • /
    • pp.3479-3489
    • /
    • 2000
  • Most of the study on fairness control method for Distributed-Queue Dual-Bus(DQDB) have been performed under specific load types such as equal probability load types or symmetric load types. On Web-based internet enviroments client-server load types are more practical traffic patlerns than specrfic load types. In this paper, an effiective fairness control method to distribute DQDR network bandwidth fairly to all stations under a client-server load is proposed. In order to implement a dynamic bandwidth timing capabihty needed to distribute the bandwidth fairty at heavy loads, the proposed method uses two pararnetexs, one is an access hrnit to legulate each station's packet transmission and the other is the number of extra emply slots that are yielded to downstream stations. In point of implementation this mechanism is simpler and easier than Bandwidth Tuning Mechanism(BTM) that uses an intermediate pattern and an adptation function. Simulation results show that it outperforms othen mecharusms.

  • PDF