• 제목/요약/키워드: dynamic topic modeling

검색결과 50건 처리시간 0.024초

다이내믹 토픽 모델링의 의미적 시각화 방법론 (Semantic Visualization of Dynamic Topic Modeling)

  • 연진욱;부현경;김남규
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.131-154
    • /
    • 2022
  • 최근 방대한 양의 텍스트 데이터에 대한 분석을 통해 유용한 지식을 창출하는 시도가 꾸준히 증가하고 있으며, 특히 토픽 모델링(Topic Modeling)을 통해 다양한 분야의 여러 이슈를 발견하기 위한 연구가 활발히 이루어지고 있다. 초기의 토픽 모델링은 토픽의 발견 자체에 초점을 두었지만, 점차 시기의 변화에 따른 토픽의 변화를 고찰하는 방향으로 연구의 흐름이 진화하고 있다. 특히 토픽 자체의 내용, 즉 토픽을 구성하는 키워드의 변화를 수용한 다이내믹 토픽 모델링(Dynamic Topic Modeling)에 대한 관심이 높아지고 있지만, 다이내믹 토픽 모델링은 분석 결과의 직관적인 이해가 어렵고 키워드의 변화가 토픽의 의미에 미치는 영향을 나타내지 못한다는 한계를 갖는다. 본 논문에서는 이러한 한계를 극복하기 위해 다이내믹 토픽 모델링과 워드 임베딩(Word Embedding)을 활용하여 토픽의 변화 및 토픽 간 관계를 직관적으로 해석할 수 있는 방안을 제시한다. 구체적으로 본 연구에서는 다이내믹 토픽 모델링 결과로부터 각 시기별 토픽의 상위 키워드와 해당 키워드의 토픽 가중치를 도출하여 정규화하고, 사전 학습된 워드 임베딩 모델을 활용하여 각 토픽 키워드의 벡터를 추출한 후 각 토픽에 대해 키워드 벡터의 가중합을 산출하여 각 토픽의 의미를 벡터로 나타낸다. 또한 이렇게 도출된 각 토픽의 의미 벡터를 2차원 평면에 시각화하여 토픽의 변화 양상 및 토픽 간 관계를 표현하고 해석한다. 제안 방법론의 실무 적용 가능성을 평가하기 위해 DBpia에 2016년부터 2021년까지 공개된 논문 중 '인공지능' 관련 논문 1,847건에 대한 실험을 수행하였으며, 실험 결과 제안 방법론을 통해 다양한 토픽이 시간의 흐름에 따라 변화하는 양상을 직관적으로 파악할 수 있음을 확인하였다.

K 패션에 대한 글로벌 미디어 보도 경향 분석 -다이내믹 토픽 모델링(Dynamic Topic Modeling)의 적용- (Analysis of Global Media Reporting Trends for K-fashion -Applying Dynamic Topic Modeling-)

  • 안효선;김지영
    • 한국의류학회지
    • /
    • 제46권6호
    • /
    • pp.1004-1022
    • /
    • 2022
  • This study seeks to investigate K-fashion's external image by examining the trends in global media reporting. It applies Dynamic Topic Modeling (DTM), which captures the evolution of topics in a sequentially organized corpus of documents, and consists of text preprocessing, the determination of the number of topics, and a timeseries analysis of the probability distribution of words within topics. The data set comprised 551 online media articles on 'Korean fashion' or 'K-fashion' published on Google News between 2010 and 2021. The analysis identifies seven topics: 'brand look and style,' 'lifestyle,' 'traditional style,' 'Seoul Fashion Week (SFW) event,' 'model size,' 'K-pop,' and 'fashion market,' as well as annual topic proportion trends. It also explores annual word changes within the topic and indicates increasing and decreasing word patterns. In most topics, the probability distribution of the word 'brand' is confirmed to be on the increase, while 'digital,' 'platform,' and 'virtual' have been newly created in the 'SFW event' topic. Moreover, this study confirms the transition of each K-fashion topic over the past 12 years, along with various factors related to Hallyu content, traditional culture, government support, and digital technology innovation.

트윗의 타임 시퀀스를 활용한 DTM 분석 : 2019 남북미정상회동 이벤트를 중심으로 (Tweets analysis using a Dynamic Topic Modeling : Focusing on the 2019 Koreas-US DMZ Summit)

  • 고은지;최선영
    • 한국정보통신학회논문지
    • /
    • 제25권2호
    • /
    • pp.308-313
    • /
    • 2021
  • 이 연구는 2019년 판문점 남북미 정상 회동 트윗을 타임 시퀀스와 함께 수집하여 시퀀셜 토픽모델링인 DTM으로 분석하였다. 트위터와 같은 마이크로 블로깅 서비스는 단일 이벤트에 뉴스와 오피니언이 혼재된 비정형 데이터가 대규모로 동시에 발생하고, 정보와 반응이 동일 메시지 형식으로 생산된다. 때문에 토픽 트렌드를 파악하려면 시퀀셜 데이터의 특성을 반영하여 패턴 분석을 해야 맥락적 의미를 알 수 있다. 토픽 일관성 점수를 구해 LDA를 평가한 후 DTM을 계산한 결과, 뉴스 보도와 오피니언 관련 토픽 30개가 도출되었고, 각 토픽과 키워드는 시간에 따라 발생 확률이 역동적으로 진화하고 있었다. 결론적으로 DTM은 특정 이벤트에 대한 사회 전반에 나타난 통합적 토픽 추이를 시간에 따라 분석하는데 적합한 모델임을 밝혔다.

동적 토픽분석을 활용한 스마트그리드 연구동향 분석 (Research Trend Analysis for Smart Grids Using Dynamic Topic Modeling)

  • 나상태;안주언;정민호;김자희
    • 전기학회논문지
    • /
    • 제66권4호
    • /
    • pp.613-620
    • /
    • 2017
  • The power grid has been changed to a smart grid system to satisfy the growing need for power grid complexity, demand, reliability, security, and efficiency with a combination of existing power and ICT technology. This study analyzes the research trends in smart grid technology in the period since the introduction of the smart grid system and compares it with industrial trends to grasp the progress and characteristics of Smart Grid technology and look for ways to innovate the technology. To do this, we analyze the research trends using dynamic topic modeling, which is capable of time-series research topic analysis. Next, we compare the results of research trends with industrial trends analyzed by Gartner's experts to demonstrate that smart grid research is evolving to the level of industrialization. The results of this study are quantitative analysis through data mining, and it is expected that it will be used in many fields such as companies that want to participate in industry and government agencies that need to establish policies by showing more objective analysis results.

자아 중심 네트워크 분석과 동적 인용 네트워크를 활용한 토픽모델링 기반 연구동향 분석에 관한 연구 (Combining Ego-centric Network Analysis and Dynamic Citation Network Analysis to Topic Modeling for Characterizing Research Trends)

  • 유소영
    • 정보관리학회지
    • /
    • 제32권1호
    • /
    • pp.153-169
    • /
    • 2015
  • 이 연구에서는 토픽 모델링 결과 해석의 용이성을 위하여, 동적 인용 네트워크를 활용하여 LDA 기반 토픽 모델링의 토픽 수를 설정하고 중복 배치된 주요 키워드를 자아 중심 네트워크 분석을 통해 재배치하여 제시하는 방법을 제안하였다. 'White LED' 두 분야의 논문 데이터를 이용하여 분석한 결과, 동적 인용 네트워크 분석을 통해 형성된 분석대상 문헌집단에 혼잡도에 따른 토픽수를 사용하고 중복 분류된 토픽 내 주요 키워드를 자아중심 네트워크 분석 기법을 적용하여 재배치한 결과가 토픽 간의 중복도가 가장 낮은 것으로 나타났다. 따라서 동적 인용 네트워크 및 자아 중심 네트워크 분석을 적용함으로써 토픽모델링에 의한 분석 결과를 보완하는 다면적인 연구 동향 분석이 가능할 것으로 보인다.

다이나믹토픽모델링을 활용한 문헌정보학 분야의 토픽 변화 분석 (Analysis of Research Topic Trend in Library and Information Science Using Dynamic Topic Modeling)

  • 김선욱;양기덕;이혜경
    • 한국도서관정보학회지
    • /
    • 제53권2호
    • /
    • pp.265-284
    • /
    • 2022
  • 본 연구는 2001년부터 2020년까지 문헌정보학 SSCI 85종 학술지에 게재된 55,442편의 학술논문의 논문제목과 초록을 기반으로 다이나믹토픽모델링을 수행하여, 문헌정보학 분야의 연도별 흐름에 따른 연구 주제 추이를 분석하였다. 그 결과, 10개의 토픽에서 도서관경영(장서개발 및 관리, 도서관평가, 도서관 지식경영, 기획 및 활성화), 정보학(계량정보학, 정보이용행태·이용자연구, 의료정보, 정보시스템), 도서관 서비스(도서관교육·정보리터러시), 도서관체계(도서관 시책 및 정책)에 따른 4개의 대분류를 파악하였다. 연도별 흐름에 따라 정보학 영역의 경우, 계량정보학 연구 주제가 학술지단위에서 논문단위로 변화되고 있었으며, 최근 도서관경영 영역의 경우, 이용자의 의견과 감정에 관련한 연구가 최근 등장하였다. 도서관서비스 연구영역은 20년간 안정적인 연구 주제로 그 양상이 보다 심화되고 견고해졌음을 확인할 수 있었다. 그리고 최근에는 모바일과 소셜미디어와 관련한 연구가 진행 중인 것으로 나타났다. 한편, 정보학영역 하위주제로 의료정보와 관련한 연구가 비중 있게 등장해, 문헌정보학의 간학문적인 특징이 잘 나타난 결과라 판단하였다.

Topics and Trends in Metadata Research

  • Oh, Jung Sun;Park, Ok Nam
    • Journal of Information Science Theory and Practice
    • /
    • 제6권4호
    • /
    • pp.39-53
    • /
    • 2018
  • While the body of research on metadata has grown substantially, there has been a lack of systematic analysis of the field of metadata. In this study, we attempt to fill this gap by examining metadata literature spanning the past 20 years. With the combination of a text mining technique, topic modeling, and network analysis, we analyzed 2,713 scholarly papers on metadata published between 1995 and 2014 and identified main topics and trends in metadata research. As the result of topic modeling, 20 topics were discovered and, among those, the most prominent topics were reviewed in detail. In addition, the changes over time in the topic composition, in terms of both the relative topic proportions and the structure of topic networks, were traced to find past and emerging trends in research. The results show that a number of core themes in metadata research have been established over the past decades and the field has advanced, embracing and responding to the dynamic changes in information environments as well as new developments in the professional field.

Exploring trends in blockchain publications with topic modeling: Implications for forecasting the emergence of industry applications

  • Jeongho Lee;Hangjung Zo;Tom Steinberger
    • ETRI Journal
    • /
    • 제45권6호
    • /
    • pp.982-995
    • /
    • 2023
  • Technological innovation generates products, services, and processes that can disrupt existing industries and lead to the emergence of new fields. Distributed ledger technology, or blockchain, offers novel transparency, security, and anonymity characteristics in transaction data that may disrupt existing industries. However, research attention has largely examined its application to finance. Less is known of any broader applications, particularly in Industry 4.0. This study investigates academic research publications on blockchain and predicts emerging industries using academia-industry dynamics. This study adopts latent Dirichlet allocation and dynamic topic models to analyze large text data with a high capacity for dimensionality reduction. Prior studies confirm that research contributes to technological innovation through spillover, including products, processes, and services. This study predicts emerging industries that will likely incorporate blockchain technology using insights from the knowledge structure of publications.

섬유소재 분야 특허 기술 동향 분석: DETM & STM 텍스트마이닝 방법론 활용 (Research of Patent Technology Trends in Textile Materials: Text Mining Methodology Using DETM & STM)

  • 이현상;조보근;오세환;하성호
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제30권3호
    • /
    • pp.201-216
    • /
    • 2021
  • Purpose The purpose of this study is to analyze the trend of patent technology in textile materials using text mining methodology based on Dynamic Embedded Topic Model and Structural Topic Model. It is expected that this study will have positive impact on revitalizing and developing textile materials industry as finding out technology trends. Design/methodology/approach The data used in this study is 866 domestic patent text data in textile material from 1974 to 2020. In order to analyze technology trends from various aspect, Dynamic Embedded Topic Model and Structural Topic Model mechanism were used. The word embedding technique used in DETM is the GloVe technique. For Stable learning of topic modeling, amortized variational inference was performed based on the Recurrent Neural Network. Findings As a result of this analysis, it was found that 'manufacture' topics had the largest share among the six topics. Keyword trend analysis found the fact that natural and nanotechnology have recently been attracting attention. The metadata analysis results showed that manufacture technologies could have a high probability of patent registration in entire time series, but the analysis results in recent years showed that the trend of elasticity and safety technology is increasing.

네트워크 분석과 동적 토픽모델링을 활용한 국내 인공지능 분야 연구동향 분석 (Analyzing Research Trends of Domestic Artificial Intelligence Research Using Network Analysis and Dynamic Topic Modelling)

  • 정우진;오찬희;주영준
    • 한국문헌정보학회지
    • /
    • 제55권4호
    • /
    • pp.141-157
    • /
    • 2021
  • 본 연구는 국내 인공지능 분야 연구동향을 파악하기 위해 국내 학술지에 발표된 인공지능 분야 논문들을 대상으로 네트워크 분석 및 동적 토픽 모델링 분석을 진행하였다. 2020년까지 KCI(한국학술지인용색인)에 등록된 논문 중 '인공지능'과 'artificial intelligence' 두 개의 키워드 중 하나 또는 하나 이상이 논문 제목 또는 색인 키워드에 포함한 2,552개 논문들의 메타데이터 및 초록을 수집하였다. 키워드, 소속기관, 주제 분야, 초록의 추출 및 전처리 작업을 진행하였고 키워드를 활용한 키워드 동시 출현 네트워크 구축 및 분석으로 국내 인공지능 분야의 주요 키워드를 확인하였으며, 소속기관 정보를 활용한 기관 협력 네트워크를 통해 국내외 산학기관들의 협력 정 도 및 특징을 파악하였다. 또한 연구 대상 논문들 중 한글로 작성된 1845개의 초록 들을 대상으로 동적 토픽 모델링을 진행하였으며, 주제어들을 토대로 13개의 주제를 레이블링하였다. 레이블링 된 13개의 주제를 통해 국내 인공지능 연구 분야의 시기별 주제 동향을 파악하였다. 본 연구는 기존의 선행연구들에서 시도하지 않은 저자 소속기관 등을 활용한 기관 협력 네트워크 및 초록을 활용한 동적 토픽 모델링을 통해 국내 인공지능 분야 연구동향 파악의 시야를 확장하는 것으로 학술적 의의를 지닌다. 또한, 본 연구의 결과가 인공지능 시대에 부합하는 국가 정책 수립 기여라는 실질적 함의를 시사한다.