In this paper, seismic performance assessment has been examined for a mid-rise RC building subjected to 2016 Gyeongju earthquake occurred in Korea. For the purpose of the paper, 2D external and internal frames in each direction of the building have been employed in the present comparative analyses. Nonlinear static pushover analyses have been conducted to estimate frame capacities. Nonlinear dynamic time-history analyses have also been carried out to examine demands for the frames subjected to ground motions recorded at stations in near of Gyeongju and a previous earthquake ground motion. Analytical predictions demonstrate that maximum demands are significantly affected by characteristics of both spectral acceleration response and spectrum intensity over a wide range of periods. Further damage potential of the frames has been evaluated in terms of fragility analyses using the same ground motions. Fragility results reveal that the ground motion characteristics of the Gyeongju earthquake have little influence on the seismic demand and fragility of frames.
The paper presents experimental and numerical studies carried out on low-rise RC frames, typically found in developing countries. Shake table tests were conducted on 1:3 reduced scaled two-story RC frames that included a code conforming SMRF model and another non-compliant model. The later was similar to the code conforming model, except, it was prepared in concrete having strength 33% lower than the design specified, which is commonly found in the region. The models were tested on shake table, through multiple excitations, using acceleration time history of 1994 Northridge earthquake, which was linearly scaled for multi-levels excitations in order to study the structures' damage mechanism and measure the structural response. A representative numerical model was prepared in finite element based program SeismoStruct, simulating the observed local damage mechanisms (bar-slip and joint shear hinging), for seismic analysis of RC frames having weaker beam-column joints. A suite of spectrum compatible acceleration records was obtained from PEER for incremental dynamic analysis of considered RC frames. The seismic performance of considered RC frames was quantified in terms of seismic response parameters (seismic response modification, overstrength and displacement amplification factors), for critical comparison.
On the basis that ground motions may arrive at a structure from any horizontal direction and that different directions of seismic incidence would result in different structural dynamic responses, this paper focuses on orienting the crucial seismic incidence of transmission tower-line systems based on the wavelet energy method. A typical transmission tower-line system is chosen as the case study, and two finite element (FE) models are established in ABAQUS, with and without consideration of the interaction between the transmission towers and the transmission lines. The mode combination frequency is defined by considering the influence of the higher-order modes of the structure. Subsequently, wavelet transformation is performed to obtain the total effective energy input and the effective energy input rate corresponding to the mode combination frequency to further judge the critical angle of seismic incidence by comparing these two performance indexes under different seismic incidence angles. To validate this approach, finite element history analysis (FEHA) is imposed on both FE models to generate comparative data, and good agreement is found. The results demonstrate that the wavelet energy method can forecast the critical angle of seismic incidence of a transmission tower-line system with adequate accuracy, avoiding time-consuming and cumbersome computer analysis. The proposed approach can be used in future seismic design of transmission tower-line systems.
The design codes and calculation methods related to soil-steel composite bridges and culverts only specify the minimum soil cover depth. This value is connected with the bridge span and shell height. In the case of static and dynamic loads (like passing vehicles), such approach seems to be quite reasonable. However, it is important to know how the soil cover depth affects the behaviour of soil-steel composite bridges under seismic excitation. This paper presents the results of a numerical study of soil-steel bridges with different soil cover depths (1.00, 2.00, 2.40, 3.00, 4.00, 5.00, 6.00 and 7.00 m) under seismic excitation. In addition, the same soil cover depths with different boundary conditions of the soil-steel bridge were analysed. The analysed bridge has two closed pipe-arches in its cross section. The load-carrying structure was constructed as two shells assembled from corrugated steel plate sheets, designed with a depth of 0.05 m, pitch of 0.15 m, and plate thickness of 0.003 m. The shell span is 4.40 m, and the shell height is 2.80 m. Numerical analysis was conducted using the DIANA programme based on the finite element method. A nonlinear model with El Centro records and the time history method was used to analyse the problem.
This paper studied the subgrade spring stiffness and its influencing factors in the seismic deformation method of circular tunnel. Numerical calculations are performed for 3 influencing factors: stratum stiffness, tunnel diameter and burial depth. The results show that the stratum stiffness and tunnel diameter have great influence on the subgrade spring stiffness. The subgrade spring stiffness increases linearly with stratum stiffness increasement, and decreases with the tunnel diameter increasement. When the burial depth ratio (burial depth/tunnel diameter) exceeds to 5, the subgrade spring stiffness has little sensitivity to the burial depth. Then, a proposed formula of subgrade spring stiffness for the seismic deformation method of circular tunnel is proposed. Meanwhile, the internal force results of the seismic deformation method are larger than that of the dynamic time history method, but the internal force distributions of the two methods are consistent, that is, the structure exhibits elliptical deformation with the largest internal force at the conjugate 45° position of the circular tunnel. Therefore, the seismic deformation method based on the proposed formula can effectively reflect the deformation and internal force characteristics of the tunnel and has good applicability in engineering practice.
현재 한국에서는 연쇄 붕괴에 대한 설계지침이 적용되고 있지 않으며, 특히 무량판 구조의 연쇄 붕괴 저항 성능에 대한 연구는 초기단계라고 할 수 있다. 따라서 이 연구에서는 철근콘크리트 무량판 구조의 연쇄 붕괴 저항 성능을 평가하기위하여 3가지 해석법을 수행하였다. 선형 정적 해석을 통하여 GSA의 대체경로법에 의한 DCR 값의 차이를 비교하였고, 선형 동적 해석을 통하여 기둥 제거 이후의 수직 변위를 비교하였으며, 비선형 정적 해석을 통하여 최대 하중 계수를 판단하였다. 유효 보폭 모델과 판 유한 요소 해석 모델의 차이점을 분석하기 위하여 여러 변수들에 따라 유한 요소 해석이 수행되었다. 무량판 구조에서 실무에서 많이 사용되고 있는 유효 보폭으로 모델링하는 방법은 슬래브의 강성 기여도를 반영하고 있지 못해 연쇄 붕괴 성능 평가는 상세 유한 요소 해석이 적절할 것으로 판단된다. 여러 변수들을 종합 모서리 기둥(CC)을 제거할 경우가 가장 불리한 조건이고, 내부 기둥(IC)이 제거될 경우가 가장 유리한 조건으로 나타났다. 이 연구에서 제시된 무량판 구조의 연쇄 붕괴 저항 성능 결과로부터 향후 무량판 구조의 성능을 합리적으로 평가하는데 유용하게 활용될 수 있을 것으로 사료된다.
이 논문에서는 지진 하중을 받는 꼬인 삼각대 지지구조를 갖는 해상풍력발전기의 지진 신뢰성 해석 방법을 제시한다. 수평하중에 대해서 면외 변위가 발생하는 꼬인 삼각대지지 구조의 기하학적 특성과 지반의 비선형성을 포함한 지반-말뚝 상호작용을 고려하기 위한 구조물의 3차원 동적 유한요소 모델을 제시하였다. 지진신뢰성 평가를 위해 재현주기별 인공지진파를 사용한 시간이력 해석을 통해 말뚝 두부의 수평변위로 정의된 한계 상태식에 대하여 파괴확률을 산정하였다. 비선형 시간이력해석에 의한 한계상태식 평가를 고려하여 효율적으로 신뢰성 해석을 하기 위해 Markov Chain Monte Carlo 샘플링 방법을 적용한 부분집합 시뮬레이션 방법의 적용을 제시하였다. 제시한 방법은 2차원 모델 및 정적해석만으로는 정확한 결과를 도출할 수 없는 꼬인 삼각대 지지구조를 갖는 해상풍력발전기의 신뢰성 평가 및 설계기준 개발에 활용될 수 있음을 보였다.
The objective of this study is to propose new seismic intensity parameters based on the Hilbert spectrum and to associate them with the seismic damage potential. In recent years the assessment of even more seismic features derived from the seismic acceleration time-histories was associated with the structural damage. For a better insight into the complex seismic acceleration time-history, Hilbert-Huang Transform (HHT) analysis is utilized for its processing, and the Hilbert spectrum is obtained. New proposed seismic intensity parameters based on the Hilbert spectrum are derived. The aim is to achieve a significant estimation of the seismic damage potential on structures from the proposed new intensity parameters confirmed by statistical methods. Park-Ang overall structural damage index is used to describe the postseismic damage status of structures. Thus, a set of recorded seismic accelerograms from all over the word is applied on a reinforced concrete frame structure, and the Park-Ang indices through nonlinear dynamic analysis are provided and considered subsequently as reference numerical values. Conventional seismic parameters, with well-known seismic structural damage interrelation, are evaluated for the same set of excitations. Statistical procedures, namely correlation study and multilinear regression analysis, are applied on the set of the conventional parameters and the set of proposed new parameters separately, to confirm their interrelation with the seismic structural damage. The regression models are used for the evaluation of the structural damage indices for every set of parameters, respectively. The predicted numerical values of the structural damage indices evaluated from the two sets of seismic intensity parameters are inter-compared with the reference values. The numerical results confirm the ability of the proposed Hilbert spectrum based new seismic intensity parameters to approximate the postseismic structural damage with a smaller Standard Error of Estimation than this accomplished of the conventional ones.
초고강 콘크리트를 활용한 부잔교는 강재부잔교에 비해 부식의 염려가 없어 내구성과 동적안전성이 우수하고, 일반 콘크리트에 비해 경량구조물로 건현확보가 유리하다. 현재 국내 연구개발 결과 SUPER concrete는 100MPa까지는 강섬유의 배합없이 일반골재만으로 배합이 가능하여 고부식성 환경의 항만구조물의 내구성에 적합한 강도이다. 부잔교는 상부슬래브에 작용하는 차량(DB-18) 또는 군집하중(5kN/m2)과, 외부 벽체 및 하부슬래브에 작용하는 파력의 수평과 양력성분을 견디도록 하여야 한다. 설계 파랑은 인천 연평도지역을 대상으로 50년 빈도 유의파와 주기에 해당하는 파력을 산정하여 X,Y축 위치에 따라 수평 및 양력성분을 재하하였다. 전체계 해석시 부잔교는 연직방향 경계조건이 없는 상태에서 부력 산정이 가능하도록 기하비선형 및 시간이력해석기법을 응용하였다(Strand 7). 부잔교 슬래브에 대해서는 실물모형실험을 통해 DB-18하중 재하에 따른 안전성을 확인하였다.
The major sources of energy dissipation in steel frames with partially restrained (PR) connections are evaluated. Available experimental results are used to verify the mathematical model used in this study. The verified model is then used to quantify the energy dissipation in PR connections due to hysteretic behavior, due to viscous damping and at plastic hinges if they are formed. Observations are made for two load conditions: a sinusoidal load applied at the top of the frame, and a sinusoidal ground acceleration applied at the base of the frame representing a seismic loading condition. This analytical study confirms the general behavior, observed during experimental investigations, that PR connections reduce the overall stiffness of frames, but add a major source of energy dissipation. As the connections become stiffer, the contribution of PR connections in dissipating energy becomes less significant. A connection with a T ratio (representing its stiffness) of at least 0.9 should not be considered as fully restrained as is commonly assumed, since the energy dissipation characteristics are different. The flexibility of PR connections alters the fundamental frequency of the frame. Depending on the situation, it may bring the frame closer to or further from the resonance condition. If the frame approaches the resonance condition, the effect of damping is expected to be very important. However, if the frame moves away from the resonance condition, the energy dissipation at the PR connections is expected to be significant with an increase in the deformation of the frame, particularly for low damping values. For low damping values, the dissipation of energy at plastic hinges is comparable to that due to viscous damping, and increases as the frame approaches failure. For the range of parameters considered in this study, the energy dissipations at the PR connections and at the plastic hinges are of the same order of magnitude. The study quantitatively confirms the general observations made in experimental investigations for steel frames with PR connections; however, proper consideration of the stiffness of PR connections and other dynamic properties is essential in predicting the dynamic behavior.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.