• Title/Summary/Keyword: dynamic support vector machine

Search Result 64, Processing Time 0.028 seconds

Machine learning-based prediction of wind forces on CAARC standard tall buildings

  • Yi Li;Jie-Ting Yin;Fu-Bin Chen;Qiu-Sheng Li
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.355-366
    • /
    • 2023
  • Although machine learning (ML) techniques have been widely used in various fields of engineering practice, their applications in the field of wind engineering are still at the initial stage. In order to evaluate the feasibility of machine learning algorithms for prediction of wind loads on high-rise buildings, this study took the exposure category type, wind direction and the height of local wind force as the input features and adopted four different machine learning algorithms including k-nearest neighbor (KNN), support vector machine (SVM), gradient boosting regression tree (GBRT) and extreme gradient (XG) boosting to predict wind force coefficients of CAARC standard tall building model. All the hyper-parameters of four ML algorithms are optimized by tree-structured Parzen estimator (TPE). The result shows that mean drag force coefficients and RMS lift force coefficients can be well predicted by the GBRT algorithm model while the RMS drag force coefficients can be forecasted preferably by the XG boosting algorithm model. The proposed machine learning based algorithms for wind loads prediction can be an alternative of traditional wind tunnel tests and computational fluid dynamic simulations.

Baggage Recognition in Occluded Environment using Boosting Technique

  • Khanam, Tahmina;Deb, Kaushik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5436-5458
    • /
    • 2017
  • Automatic Video Surveillance System (AVSS) has become important to computer vision researchers as crime has increased in the twenty-first century. As a new branch of AVSS, baggage detection has a wide area of security applications. Some of them are, detecting baggage in baggage restricted super shop, detecting unclaimed baggage in public space etc. However, in this paper, a detection & classification framework of baggage is proposed. Initially, background subtraction is performed instead of sliding window approach to speed up the system and HSI model is used to deal with different illumination conditions. Then, a model is introduced to overcome shadow effect. Then, occlusion of objects is detected using proposed mirroring algorithm to track individual objects. Extraction of rotational signal descriptor (SP-RSD-HOG) with support plane from Region of Interest (ROI) add rotation invariance nature in HOG. Finally, dynamic human body parameter setting approach enables the system to detect & classify single or multiple pieces of carried baggage even if some portions of human are absent. In baggage detection, a strong classifier is generated by boosting similarity measure based multi layer Support Vector Machine (SVM)s into HOG based SVM. This boosting technique has been used to deal with various texture patterns of baggage. Experimental results have discovered the system satisfactorily accurate and faster comparative to other alternatives.

Study on gesture recognition based on IIDTW algorithm

  • Tian, Pei;Chen, Guozhen;Li, Nianfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6063-6079
    • /
    • 2019
  • When the length of sampling data sequence is too large, the method of gesture recognition based on traditional Dynamic Time Warping (DTW) algorithm will lead to too long calculation time, and the accuracy of recognition result is not high.Support vector machine (SVM) has some shortcomings in precision, Edit Distance on Real Sequences(EDR) algorithm does not guarantee that noise suppression will not suppress effective data.A new method based on Improved Interpolation Dynamic Time Warping (IIDTW)algorithm is proposed to improve the efficiency of gesture recognition and the accuracy of gesture recognition. The results show that the computational efficiency of IIDTW algorithm is more than twice that of SVM-DTW algorithm, the error acceptance rate is FAR reduced by 0.01%, and the error rejection rate FRR is reduced by 0.5%.Gesture recognition based on IIDTW algorithm can achieve better recognition status. If it is applied to unlock mobile phone, it is expected to become a new generation of unlock mode.

A Hardware Implementation of Support Vector Machines for Speaker Verification System (에스 브이 엠을 이용한 화자인증 알고리즘의 하드웨어 구현 연구)

  • 최우용;황병희;이경희;반성범;정용화;정상화
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.175-182
    • /
    • 2004
  • There is a growing interest in speaker verification, which verifies someone by his/her voices. There are many speaker vitrification algorithms such as HMM and DTW. However, it is impossible to apply these algorithms to memory limited applications because of large number of feature vectors to register or verify users. In this paper we introduces a speaker verification system using SVM, which needs a little memory usage and computation time. Also we proposed hardware architecture for SVM. Experiments were conducted with Korean database which consists of four-digit strings. Although the error rate of SVM is slightly higher than that of HMM, SVM required much less computation time and small model size.

A Study on the Motion Object Detection Method for Autonomous Driving (자율주행을 위한 동적 객체 인식 방법에 관한 연구)

  • Park, Seung-Jun;Park, Sang-Bae;Kim, Jung-Ha
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.547-553
    • /
    • 2021
  • Dynamic object recognition is an important task for autonomous vehicles. Since dynamic objects exhibit a higher collision risk than static objects, our own trajectories should be planned to match the future state of moving elements in the scene. Time information such as optical flow can be used to recognize movement. Existing optical flow calculations are based only on camera sensors and are prone to misunderstanding in low light conditions. In this regard, to improve recognition performance in low-light environments, we applied a normalization filter and a correction function for Gamma Value to the input images. The low light quality improvement algorithm can be applied to confirm the more accurate detection of Object's Bounding Box for the vehicle. It was confirmed that there is an important in object recognition through image prepocessing and deep learning using YOLO.

Empirical evaluations for predicting the damage of FRC wall subjected to close-in explosions

  • Duc-Kien Thai;Thai-Hoan Pham;Duy-Liem Nguyen;Tran Minh Tu;Phan Van Tien
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.65-79
    • /
    • 2023
  • This paper presents a development of empirical evaluations, which can be used to evaluate the damage of fiber-reinforced concrete composites (FRC) wall subjected to close-in blast loads. For this development, a combined application of numerical simulation and machine learning approaches are employed. First, finite element modeling of FRC wall under blast loading is developed and verified using experimental data. Numerical analyses are then carried out to investigate the dynamic behavior of the FRC wall under blast loading. In addition, a data set of 384 samples on the damage of FRC wall due to blast loads is then produced in order to develop machine learning models. Second, three robust machine learning models of Random Forest (RF), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost) are employed to propose empirical evaluations for predicting the damage of FRC wall. The proposed empirical evaluations are very useful for practical evaluation and design of FRC wall subjected to blast loads.

People Detection Algorithm in Dynamic Background (동적인 배경에서의 사람 검출 알고리즘)

  • Choi, Yu Jung;Lee, Dong Ryeol;Kim, Yoon
    • Journal of Industrial Technology
    • /
    • v.38 no.1
    • /
    • pp.41-52
    • /
    • 2018
  • Recently, object detection is a critical function for any system that uses computer vision and is widely used in various fields such as video surveillance and self-driving cars. However, the conventional methods can not detect the objects clearly because of the dynamic background change in the beach. In this paper, we propose a new technique to detect humans correctly in the dynamic videos like shores. A new background modeling method that combines spatial GMM (Gaussian Mixture Model) and temporal GMM is proposed to make more correct background image. Also, the proposed method improve the accuracy of people detection by using SVM (Support Vector Machine) to classify people from the objects and KCF (Kernelized Correlation Filter) Tracker to track people continuously in the complicated environment. The experimental result shows that our method can work well for detection and tracking of objects in videos containing dynamic factors and situations.

Gait Recognition Algorithm Based on Feature Fusion of GEI Dynamic Region and Gabor Wavelets

  • Huang, Jun;Wang, Xiuhui;Wang, Jun
    • Journal of Information Processing Systems
    • /
    • v.14 no.4
    • /
    • pp.892-903
    • /
    • 2018
  • The paper proposes a novel gait recognition algorithm based on feature fusion of gait energy image (GEI) dynamic region and Gabor, which consists of four steps. First, the gait contour images are extracted through the object detection, binarization and morphological process. Secondly, features of GEI at different angles and Gabor features with multiple orientations are extracted from the dynamic part of GEI, respectively. Then averaging method is adopted to fuse features of GEI dynamic region with features of Gabor wavelets on feature layer and the feature space dimension is reduced by an improved Kernel Principal Component Analysis (KPCA). Finally, the vectors of feature fusion are input into the support vector machine (SVM) based on multi classification to realize the classification and recognition of gait. The primary contributions of the paper are: a novel gait recognition algorithm based on based on feature fusion of GEI and Gabor is proposed; an improved KPCA method is used to reduce the feature matrix dimension; a SVM is employed to identify the gait sequences. The experimental results suggest that the proposed algorithm yields over 90% of correct classification rate, which testify that the method can identify better different human gait and get better recognized effect than other existing algorithms.

A Robust Face Tracking System using Effective Detector and Kalman Filter (효과적인 검출기와 칼만 필터를 이용한 강인한 얼굴 추적 시스템)

  • Seong, Chi-Young;Kang, Byoung-Doo;Jeon, Jae-Deok;Kim, Sang-Kyoon;Kim, Jong-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.1
    • /
    • pp.26-35
    • /
    • 2007
  • We present a robust face tracking system from the sequence of video images based on effective detector and Kalman filter. To construct the effective face detector, we extract the face features using the five types of simple Haar-like features. Extracted features are reinterpreted using Principal Component Analysis (PCA), and interpreted principal components are used for Support Vector Machine (SVM) that classifies the faces and non-faces. We trace the moving face with Kalman filter, which uses the static information of the detected faces and the dynamic information of changes between previous and current frames. To make a real-time tracking system, we reduce processing time by adjusting the frequency of face detection. In this experiment, the proposed system showed an average tracking rate of 95.5% and processed at 15 frames per second. This means the system is robust enough to track faces in real-time.

  • PDF

A Lightweight Software-Defined Routing Scheme for 5G URLLC in Bottleneck Networks

  • Math, Sa;Tam, Prohim;Kim, Seokhoon
    • Journal of Internet Computing and Services
    • /
    • v.23 no.2
    • /
    • pp.1-7
    • /
    • 2022
  • Machine learning (ML) algorithms have been intended to seamlessly collaborate for enabling intelligent networking in terms of massive service differentiation, prediction, and provides high-accuracy recommendation systems. Mobile edge computing (MEC) servers are located close to the edge networks to overcome the responsibility for massive requests from user devices and perform local service offloading. Moreover, there are required lightweight methods for handling real-time Internet of Things (IoT) communication perspectives, especially for ultra-reliable low-latency communication (URLLC) and optimal resource utilization. To overcome the abovementioned issues, this paper proposed an intelligent scheme for traffic steering based on the integration of MEC and lightweight ML, namely support vector machine (SVM) for effectively routing for lightweight and resource constraint networks. The scheme provides dynamic resource handling for the real-time IoT user systems based on the awareness of obvious network statues. The system evaluations were conducted by utillizing computer software simulations, and the proposed approach is remarkably outperformed the conventional schemes in terms of significant QoS metrics, including communication latency, reliability, and communication throughput.