• 제목/요약/키워드: dynamic state estimation

검색결과 222건 처리시간 0.022초

Estimation of Manoeuvring Coefficients of a Submerged Body using Parameter Identification Techniques

  • Kim, Chan-Ki;Rhee, Key-Pyo
    • Journal of Hydrospace Technology
    • /
    • 제2권2호
    • /
    • pp.24-35
    • /
    • 1996
  • This paper describes parameter identification techniques formulated for the estimation of maneuvering coefficients of a submerged body. The first part of this paper is concerned with the identifiability of the system parameters. The relationship between a stochastic linear time-invariant system and the equivalent dynamic system is investigated. The second is concerned with the development of the numerically stable identification technique. Two identification techniques are tested; one is the ma7mum likelihood (ML) methods using the Holder & Mead simplex search method and using the modified Newton-Raphson method, and the other is the modified extended Kalman filter (MEKF) method with a square-root algorithm, which can improve the numerical accuracy of the extended Kalman filter. As a results, it is said that the equations of motion for a submerged body have higher probability to generate simultaneous drift phenomenon compared to general state equations and only the ML method using the Holder & Mead simplex search method and the MEKF method with a square-root algorithm gives acceptable results.

  • PDF

Dynamic Route Guidance via Road Network Matching and Public Transportation Data

  • Nguyen, Hoa-Hung;Jeong, Han-You
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.756-761
    • /
    • 2021
  • Dynamic route guidance (DRG) finds the fastest path from a source to a destination location considering the real-time congestion information. In Korea, the traffic state information is available by the public transportation data (PTD) which is indexed on top of the node-link map (NLM). While the NLM is the authoritative low-detailed road network for major roads only, the OpenStreetMap road network (ORN) supports not only a high-detailed road network but also a few open-source routing engines, such as OSRM and Valhalla. In this paper, we propose a DRG framework based on road network matching between the NLM and ORN. This framework regularly retrieves the NLM-indexed PTD to construct a historical speed profile which is then mapped to ORN. Next, we extend the Valhalla routing engine to support dynamic routing based on the historical speed profile. The numerical results at the Yeoui-do island with collected 11-month PTD show that our DRG framework reduces the travel time up to 15.24 % and improves the estimation accuracy of travel time more than 5 times.

영구자석 여자 횡축형 선형 전동기 구동 시스템을 이용한 위치제어의 동특성 해석 (Dynamic Analysis of Position Control using Transverse Flux Linear Motor Drive System)

  • 채대직;김종무;강도현;임태윤;안호균;박승규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.1146-1148
    • /
    • 2002
  • Highly precise position control is essentially required in stead/transient state in liner motor. The overall performance of position control system is depend on the accuracy of the position information and the performance of the speed controller in low speed range. In this paper, When Load is changed that the simulation results confirm the validity of the proposed estimation and control scheme, and Dynamic characteristics of the designed Transverse Flux Linear Motor are simulated and estimated using Matlab/simlunk.

  • PDF

Crack Detection, Localization and Estimation of the Depth In a Turbo Rotor

  • Park, Rai-Wung
    • Journal of Mechanical Science and Technology
    • /
    • 제14권7호
    • /
    • pp.722-729
    • /
    • 2000
  • The goal of this paper is to describe an advanced method of a crack detection: a new way to localize position and to estimate depth of a crack on rotating shaft. As a first step, the shaft is physically modelled with a finite element method and the dynamic mathematical model is derived using the Hamilton principle; thus, the system is represented by various subsystems. The equations of motion of the shaft with a crack are established by adapting the local stiffness change through breathing and gaping from the crack to an undamaged shaft. This is the reference system for the given system. Based on a model for transient behavior induced from vibration measured at the bearings, a nonlinear state observer is designed to detect cracks on the shaft. This is the elementary NL-observer (Beo). Using the observer, an Estimator (Observer Bank) is established and arranged at the certain position on the shaft. When a crack position is localized, the procedure for estimating of the depth is engaged.

  • PDF

Dynamic Retry Adaptation Scheme to Improve Transmission of H.264 HD Video over 802.11 Peer-to-Peer Networks

  • Sinky, Mohammed;Lee, Ben;Lee, Tae-Wook;Kim, Chang-Gone;Shin, Jong-Keun
    • ETRI Journal
    • /
    • 제37권6호
    • /
    • pp.1096-1107
    • /
    • 2015
  • This paper presents a dynamic retry adaptation scheme for H.264 HD video, called DRAS.264, which dynamically adjusts the retry limits of frames at the medium access control (MAC) layer according to the impact those frames have on the streamed H.264 HD video. DRAS.264 is further improved with a bandwidth estimation technique, better prediction of packet delays, and expanded results covering multi-slice video. Our study is performed using the Open Evaluation Framework for Video Over Networks as a simulation environment for various congestion scenarios. Results show improvements in average peak signal-to-noise ratios of up to 4.45 dB for DRAS.264 in comparison to the default MAC layer operation. Furthermore, the ability of DRAS.264 to prioritize data of H.264 bitstreams reduces error propagation during video playback, leading to noticeable visual improvements.

Structural damage detection through longitudinal wave propagation using spectral finite element method

  • Kumar, K. Varun;Saravanan, T. Jothi;Sreekala, R.;Gopalakrishnan, N.;Mini, K.M.
    • Geomechanics and Engineering
    • /
    • 제12권1호
    • /
    • pp.161-183
    • /
    • 2017
  • This paper investigates the damage identification of the concrete pile element through axial wave propagation technique using computational and experimental studies. Now-a-days, concrete pile foundations are often common in all engineering structures and their safety is significant for preventing the failure. Damage detection and estimation in a sub-structure is challenging as the visual picture of the sub-structure and its condition is not well known and the state of the structure or foundation can be inferred only through its static and dynamic response. The concept of wave propagation involves dynamic impedance and whenever a wave encounters a changing impedance (due to loss of stiffness), a reflecting wave is generated with the total strain energy forked as reflected as well as refracted portions. Among many frequency domain methods, the Spectral Finite Element method (SFEM) has been found suitable for analysis of wave propagation in real engineering structures as the formulation is based on dynamic equilibrium under harmonic steady state excitation. The feasibility of the axial wave propagation technique is studied through numerical simulations using Elementary rod theory and higher order Love rod theory under SFEM and ABAQUS dynamic explicit analysis with experimental validation exercise. Towards simulating the damage scenario in a pile element, dis-continuity (impedance mismatch) is induced by varying its cross-sectional area along its length. Both experimental and computational investigations are performed under pulse-echo and pitch-catch configuration methods. Analytical and experimental results are in good agreement.

Lightweight Attention-Guided Network with Frequency Domain Reconstruction for High Dynamic Range Image Fusion

  • 박재현;이근택;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.205-208
    • /
    • 2022
  • Multi-exposure high dynamic range (HDR) image reconstruction, the task of reconstructing an HDR image from multiple low dynamic range (LDR) images in a dynamic scene, often produces ghosting artifacts caused by camera motion and moving objects and also cannot deal with washed-out regions due to over or under-exposures. While there has been many deep-learning-based methods with motion estimation to alleviate these problems, they still have limitations for severely moving scenes. They also require large parameter counts, especially in the case of state-of-the-art methods that employ attention modules. To address these issues, we propose a frequency domain approach based on the idea that the transform domain coefficients inherently involve the global information from whole image pixels to cope with large motions. Specifically we adopt Residual Fast Fourier Transform (RFFT) blocks, which allows for global interactions of pixels. Moreover, we also employ Depthwise Overparametrized convolution (DO-conv) blocks, a convolution in which each input channel is convolved with its own 2D kernel, for faster convergence and performance gains. We call this LFFNet (Lightweight Frequency Fusion Network), and experiments on the benchmarks show reduced ghosting artifacts and improved performance up to 0.6dB tonemapped PSNR compared to recent state-of-the-art methods. Our architecture also requires fewer parameters and converges faster in training.

  • PDF

적응 적분바이너리 관측기를 이용한 돌극형 영구자석 동기전동기 센서리스 속도제어 (A Sensorless Speed control of IPMSM using an Adaptive Integral Binary Observer)

  • 이형;김영조;강형석;김영석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.229-231
    • /
    • 2006
  • The paper presents a sensorless speed control of interior permanent magnet synchronous motors using an adaptive integral binary observer in view of composition with a main loop regulator and an auxiliary loop regulator. The binary observer has a property of the chattering alleviation in the constant boundary layer; however, the steady state estimation accuracy and robustness are dependent upon with width of the constant boundary. In order to improve the steady state performance of the binary observer, the binary observer is formed by adding extra integral dynamic to the switching hyperplane equation.

  • PDF

A Tracking Algorithm for Autonomous Navigation of AGVs: Federated Information Filter

  • Kim, Yong-Shik;Hong, Keum-Shik
    • 한국항해항만학회지
    • /
    • 제28권7호
    • /
    • pp.635-640
    • /
    • 2004
  • In this paper, a tracking algorithm for autonomous navigation of automated guided vehicles (AGVs) operating in container terminals is presented. The developed navigation algorithm takes the form of a federated information filter used to detect other AGVs and avoid obstacles using fused information from multiple sensors. Being equivalent to the Kalman filter (KF) algebraically, the information filter is extended to N-sensor distributed dynamic systems. In multi-sensor environments, the information-based filter is easier to decentralize, initialize, and fuse than a KF-based filter. It is proved that the information state and the information matrix of the suggested filter, which are weighted in terms of an information sharing factor, are equal to those of a centralized information filter under the regular conditions. Numerical examples using Monte Carlo simulation are provided to compare the centralized information filter and the proposed one.

접는 미사일 조종날개의 비선형 힌지 동특성 파악 (Nonlinear Hinge Dynamics Estimation of Deployable Missile Control Fin)

  • 김대관;배재성;이인;우성현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.848-854
    • /
    • 2002
  • The nonlinear characteristics for the hinge of a deployable missile control fin are investigated experimentally. The nonlinearity is caused by a worn or loose hinge and manufacturing tolerance and cannot be eliminated completely. The structural nonlinearity has an effect on the static and dynamic characteristics of the control fin. Therefore, it is necessary to establish the accurate nonlinear model for the hinge of the control fin. In the present study the existence of nonlinearities in the hinge is confirmed from the frequency response experiments such as tip random excitation and base sine sweep. Using the system identification method, especially, “Force-State Mapping Technique”, the types of nonlinearities are identified and the nonlinear hinge model of the control fin is established.

  • PDF