• Title/Summary/Keyword: dynamic stabilizer

Search Result 88, Processing Time 0.025 seconds

Design of an Adaptive Neurofuzzy-Based Power System Stabilizer (적응 뉴로 퍼지 전력계통 안정화 장치의 설계)

  • Jeong, Hyeong-Hwan;Jeong, Mun-Gyu;Kim, Sang-Hyo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.11
    • /
    • pp.497-505
    • /
    • 2001
  • The power system stabilizer(PSS) is important for the suppression of low-frequency oscillation and the improvement of system stability. In this paper, An Adaptive Neurofuzzy-based Power System Stabilizer(ANF PSS) is proposed as the new PSS type. The proposed PSS employs a multi-layer adaptive network. The network is trained directly from the input and the output of the generating unit. The algorithm combines the advantages of the Artificial Neural Network(ANN) and Fuzzy Logic Control(FLC) schemes. Studies show that the proposed ANF PSS can provide good damping of the power system over the wide range of operating conditions and improve the dynamic performance of the system.

  • PDF

Power System Stabilizer using Inverse Dynamic Neuro Controller (역동역학 뉴로제어기를 이용한 전력계통 안정화 장치)

  • Boo, Chang-Jin;Kim, Moon-Chan;Kim, Ho-Chan;Ko, Hee-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2188-2190
    • /
    • 2004
  • This paper presents an implementation of power system stabilizer using inverse dynamic neuro controller. Traditionally, mutilayer neural network is used for a universal approximator and applied to a system as a neuro-controller. In this case, at least two neural networks are used and continuous tuning of neuro-controller is required. Moreover, training of neural network is required considering all possible disturbances, which is impractical in real situation. In this paper, Taylor Model Based Inverse Dynamic Neuro Model (TMBIDNM) is introduced to avoid this problem. Inverse Dynamic Neuro Controller (IDNC) consists of TMBIDNM and Error Reduction Neuro Model (ERNM). Once the TMBIDNM is trained, it does not require retuning for cases with other types of disturbances. The controller is tested for one machine and infinite-bus power system for various operating conditions.

  • PDF

A Method to Prevent Transfer Device of Image Stabilizer from Blunting by Artificial Vibration (가진입력에 의한 손떨림 보정용 이송장치의 둔화현상 방지대책)

  • Yeom, Dong-Hae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1076-1079
    • /
    • 2009
  • This article deals with an optical image stabilizer which moves an image sensor in the direction of cancelling the vibration caused by hand shaking to prevent a photographed image from blurring. The ball-guide way method adopted as a transfer device of the image sensor is easy to be manufactured because of its simple structure and is suitable to minimize the friction between mechanisms, but has weakness of a chance of physical defect such as groove and rising. In case that the movement of the transfer device equipped with the image sensor is blunted because a ball is stuck in defects of guide way, the performance of the image stabilizer falls down drastically. We propose a method to prevent the transfer device from blunting by applying artificial vibration. At this time, the artificial vibration should be designed under consideration of dynamic characteristics and specifications of the system to be discriminated from the vibration caused by hand shaking.

A Study on the Power System Stabilizer Design using Object-Oriented Method (객체지향기법을 적용한 PSS 설계에 관한 연구)

  • Park, Ji-Ho;Baek, Young-Sik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.671-677
    • /
    • 1999
  • In this paper, we have designed power system stabilizer (PSS) using object-oriented method. There are several types of power system stabilizer. A proportional-integral(PI) controller is very simple for practical implementation. Therefore it has been widely employed by the industry. The methods of obtaining the gains(Ki,Kp) of PI controller are root-locus method and sub-optimal regulator approach. But these methods are cannot be applicable to nonlinear system and faulted power system. So we proposed a new method which can be applied to nonlinear system by numerical analysis method. The method of dynamic system simulation by numerical method is very difficult and complex. We proposed flexible simultaion method for complex power system analysis using object-oriented programming(OOP) and applied to PI controller design.

  • PDF

Optimal Parameter Selection of Power System Stabilizer using Genetic Algorithm (유전 알고리즘을 이용한 전력시스템 안정화 장치의 최적 파라미터 선정)

  • Chung, Hyeng-Hwan;Wang, Yong-Peel;Chung, Dong-Il;Chung, Mun-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.683-691
    • /
    • 1999
  • In this paper, it is suggested that the selection method of optimal parameter of power system stabilizer(PSS) with robustness in low frequency oscillation for power system using Real Variable Elitism Genetc Algorithm(RVEGA). The optimal parameters were selected in the case of power system stabilizer with one lead compensator, and two lead compensator. Also, the frequency responses characteristic of PSS, the system eigenvalues criterion and the dynamic characteristic were considered in the normal load and the heavy load, which proved usefulness of RVEGA compare with Yu's compensator design theory.

  • PDF

Computational Flow Analysis of a Cross-Flow Fan by LES (LES에 의한 관류홴의 전산유동해석)

  • Kim, J.K.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.20-28
    • /
    • 2010
  • The computational flow analysis using LES technique was carried out to investigate the flow characteristics of a RAC chassis consisting of a rear-guider, a stabilizer and a cross-flow fan. The commercial SC/Tetra software was used in this analysis. In view of the results so far achieved, the distribution trends of static pressure and velocity vector of central region except the edges of a CFFan are similar regardless of the number of revolution, and an eccentric vortex exists around the bottom blade of a CFFan. Also, a reverse flow is found in the region between stabilizer and CFFan. Moreover, near the edges of a CFFan, an eccentric vortex is separated to two vortexes. Also these vortexes increase the velocity near a rear-guider, and guide the flow near a rear-guider into stabilizer inlet. Therefore, the reverse flow region is formed in the bottom of a CFFan.

Parameter Estimation of a Small-Scale Unmanned Helicopter by Automated Flight Test Method (자동화 비행시험기법에 의한 소형 무인헬리콥터의 파라메터 추정)

  • Bang, Keuk-Hee;Kim, Nak-Wan;Hong, Chang-Ho;Suk, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.916-924
    • /
    • 2008
  • In this paper dynamic modeling parameters were estimated using a frequency domain estimation method. A systematic flight test method was employed using preprogrammed multistep excitation of the swashplate control input. In addition when one axis is excited, the autopilot is engaged in the other axis, thereby obtaining high-quality flight data. A dynamic model was derived for a small scale unmanned helicopter (CNUHELI-020, developed by Chungnam National University) equipped with a Bell-Hiller stabilizer bar. Six degree of freedom equations of motion were derived using the total forces and moments acting on the small scale helicopter. The dynamics of the main rotor is simplified by the first order tip-path plane, and the aerodynamic effects of fuselage, tail rotor, engine, and horizontal/vertical stabilizer were considered. Trim analysis and linearized model were used as a basic model for the parameter estimation. Doublet and multistep inputs are used to excite dynamic motions of the helicopter. The system and input matrices were estimated in the frequency domain using the equation error method in order to match the data of flight test with those of the dynamic modeling. The dynamic modeling and the flight test show similar time responses, which validates the consequence of analytic modeling and the procedures of parameter estimation.

A Study on the Effects of Hysteretic Characteristics of Leaf Springs on Handling of a Large-Sized Truck (판스프링의 이력특성이 대형트럭의 조종성능에 미치는 영향에 관한 연구)

  • 문일동;오재윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.157-164
    • /
    • 2001
  • This paper performs static and dynamic tests of a multi-leaf spring and a tapered leaf spring to investigate their hysteretic characteristics. In the static test, trapezoidal input load is applied with 0.1Hz excitation frequency and with zero initial loading conditions. In the dynamic test, sinusoidal input load is applied with five excitation amplitudes and three excitation frequencies. In these tests, static and dynamic hysteretic characteristics of the multi-leaf spring and the tapered leaf spring are compared, and, the effects of excitation amplitudes and frequencies on dynamic spring rate are also shown. In this paper, actual vehicle tests are performed to study the effects of hysteretic characteristics of the large-sized truck's handling performance. The multi-leaf spring or the tapered leaf spring is used in the front suspension. The actual vehicle test is performed in a double lane change track with three velocities. Lateral acceleration, yaw rate and roll angle are measured using a gyro-meter located at the mass center of the cab. The test results showed that a large-sized truck with a tapered leaf spring needs to have an additional apparatus such as roll stabilizer bar to increase the roll stabilizer due to hysteretic characteristics.

  • PDF

Dynamic Stabilization for a Nonlinear System with Uncontrollable Unstable Linearization (제어불가능 불안정 선형화를 가지는 비선형 시스템에 대한 다이나믹 안정화)

  • Seo, Sang-Bo;Shim, Hyung-Bo;Seo, Jin-Heon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.4
    • /
    • pp.1-6
    • /
    • 2009
  • In this paper, we design a dynamic state feedback smooth stabilizer for a nonlinear system whose Jacobian linearization may have uncontrollable mode because its eigenvalues are on the right half-plane. After designing an augmented system, a dynamic exponent scaling and backstepping enable one to explicitly design a smooth stabilizer and a continuously differentiable Lyapunov function which is positive definite and proper. The convergence of the designed controller is proved by the new notion 'degree indicator'.

Patellofemoral Instability in Children: Imaging Findings and Therapeutic Approaches

  • Hee Kyung Kim;Shital Parikh
    • Korean Journal of Radiology
    • /
    • v.23 no.6
    • /
    • pp.674-687
    • /
    • 2022
  • Patellofemoral instability (PFI) is common in pediatric knee injuries. PFI results from loss of balance in the dynamic relationship of the patella in the femoral trochlear groove. Patellar lateral dislocation, which is at the extreme of the PFI, results from medial stabilizer injury and leads to the patella hitting the lateral femoral condyle. Multiple contributing factors to PFI have been described, including anatomical variants and altered biomechanics. Femoral condyle dysplasia is a major risk factor for PFI. Medial stabilizer injury contributes to PFI by creating an imbalance in dynamic vectors of the patella. Increased Q angle, femoral anteversion, and lateral insertion of the patellar tendon are additional contributing factors that affect dynamic vectors on the patella. An imbalance in the dynamics results in patellofemoral malalignment, which can be recognized by the presence of patella alta, patellar lateral tilt, and lateral subluxation. Dynamic cross-sectional images are useful for in vivo tracking of the patella in patients with PFI. Therapeutic approaches aim to restore normal patellofemoral dynamics and prevent persistent PFI. In this article, the imaging findings of PFI, including risk factors and characteristic findings of acute lateral patellar dislocation, are reviewed. Non-surgical and surgical approaches to PFI in pediatric patients are discussed.